{"title":"选民模型对抗性攻击中的交叉现象","authors":"Shogo Mizutaka","doi":"10.1088/2632-072x/acf90b","DOIUrl":null,"url":null,"abstract":"Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as <?CDATA $(\\ln \\epsilon n)/\\epsilon$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>ϵ</mml:mi> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:math> for homogeneous networks with a large finite n . By contrast, it scales as <?CDATA $(\\ln (\\epsilon\\mu_1^2n/\\mu_2))/\\epsilon$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo form=\"prefix\">ln</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>ϵ</mml:mi> </mml:math> for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find <?CDATA $n_{\\mathrm{co}}\\sim \\epsilon^{-1/\\alpha}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">c</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and <?CDATA $\\alpha = (\\gamma-1)/2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:math> for scale-free networks with a degree exponent <?CDATA $2\\lt\\gamma\\lt3$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>2</mml:mn> <mml:mo><</mml:mo> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mn>3</mml:mn> </mml:math> .","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"15 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossover phenomenon in adversarial attacks on voter model\",\"authors\":\"Shogo Mizutaka\",\"doi\":\"10.1088/2632-072x/acf90b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as <?CDATA $(\\\\ln \\\\epsilon n)/\\\\epsilon$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>ϵ</mml:mi> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:math> for homogeneous networks with a large finite n . By contrast, it scales as <?CDATA $(\\\\ln (\\\\epsilon\\\\mu_1^2n/\\\\mu_2))/\\\\epsilon$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mo form=\\\"prefix\\\">ln</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>ϵ</mml:mi> </mml:math> for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find <?CDATA $n_{\\\\mathrm{co}}\\\\sim \\\\epsilon^{-1/\\\\alpha}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">c</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and <?CDATA $\\\\alpha = (\\\\gamma-1)/2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:math> for scale-free networks with a degree exponent <?CDATA $2\\\\lt\\\\gamma\\\\lt3$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>2</mml:mn> <mml:mo><</mml:mo> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mn>3</mml:mn> </mml:math> .\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/acf90b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/acf90b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Crossover phenomenon in adversarial attacks on voter model
Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as (lnϵn)/ϵ for homogeneous networks with a large finite n . By contrast, it scales as (ln(ϵμ12n/μ2))/ϵ for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find nco∼ϵ−1/α above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and α=(γ−1)/2 for scale-free networks with a degree exponent 2<γ<3 .