{"title":"土壤应力历史参数测定方法的可靠性","authors":"Małgorzata Wdowska, Mirosław J. Lipiński","doi":"10.2478/sgem-2023-0017","DOIUrl":null,"url":null,"abstract":"Abstract Stress history acquired by any cohesive soil influences, to a large extent, three groups of fundamental properties indispensable in geotechnical design i.e. state of soil, shear strength, and stiffness characteristics. The basic stress history parameter (from which other parameters are derived) determined directly from laboratory tests is a preconsolidation stress σ′p. Since the first method proposed by Casagrande in 1936, value σ′p is determined in the oedometer test as a border between overconsolidated (OC) and normally consolidated (NC) zones. Approach based on division between predominantly elastic, (recoverable) strain, and plastic (irrecoverable) strain is a main principle of several methods of σ′p determination, which have been proposed over the past eighty-six years. Accumulated experiences have revealed that any laboratory procedure based on the oedometer test does not provide realistic value of preconsolidation stress, especially in heavy preconsolidated soils. The major reason for that results from the fact that the mechanism responsible for natural overconsolidation is more complicated than mechanical preloading. Therefore, there is a necessity to reevaluate effectiveness of standard methods and look for another solution of evaluation yield stress σ′Y in natural soils. This article presents the comparison between σ′Y determined for various soils with use of standard methods based on conventional oedometer test and yield stress determined on the basis of alternative procedures. The latter are represented by various approaches as e.g. based on SHANSEP procedure or initial shear modulus and others. The most promising among these alternative methods is a new concept based on dilatancy phenomenon that takes place during shearing of a dense soil. The parameter reflecting stress history is derived from pore pressure response and is based on characteristic values of Skempton's parameter A record. Consistency of data concerning stress history parameters profile obtained for deep subsoil on the basis of various methods is shown for comparison.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability of Methods for Determination of Stress History Parameters in Soils\",\"authors\":\"Małgorzata Wdowska, Mirosław J. Lipiński\",\"doi\":\"10.2478/sgem-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stress history acquired by any cohesive soil influences, to a large extent, three groups of fundamental properties indispensable in geotechnical design i.e. state of soil, shear strength, and stiffness characteristics. The basic stress history parameter (from which other parameters are derived) determined directly from laboratory tests is a preconsolidation stress σ′p. Since the first method proposed by Casagrande in 1936, value σ′p is determined in the oedometer test as a border between overconsolidated (OC) and normally consolidated (NC) zones. Approach based on division between predominantly elastic, (recoverable) strain, and plastic (irrecoverable) strain is a main principle of several methods of σ′p determination, which have been proposed over the past eighty-six years. Accumulated experiences have revealed that any laboratory procedure based on the oedometer test does not provide realistic value of preconsolidation stress, especially in heavy preconsolidated soils. The major reason for that results from the fact that the mechanism responsible for natural overconsolidation is more complicated than mechanical preloading. Therefore, there is a necessity to reevaluate effectiveness of standard methods and look for another solution of evaluation yield stress σ′Y in natural soils. This article presents the comparison between σ′Y determined for various soils with use of standard methods based on conventional oedometer test and yield stress determined on the basis of alternative procedures. The latter are represented by various approaches as e.g. based on SHANSEP procedure or initial shear modulus and others. The most promising among these alternative methods is a new concept based on dilatancy phenomenon that takes place during shearing of a dense soil. The parameter reflecting stress history is derived from pore pressure response and is based on characteristic values of Skempton's parameter A record. Consistency of data concerning stress history parameters profile obtained for deep subsoil on the basis of various methods is shown for comparison.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2023-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2023-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Reliability of Methods for Determination of Stress History Parameters in Soils
Abstract Stress history acquired by any cohesive soil influences, to a large extent, three groups of fundamental properties indispensable in geotechnical design i.e. state of soil, shear strength, and stiffness characteristics. The basic stress history parameter (from which other parameters are derived) determined directly from laboratory tests is a preconsolidation stress σ′p. Since the first method proposed by Casagrande in 1936, value σ′p is determined in the oedometer test as a border between overconsolidated (OC) and normally consolidated (NC) zones. Approach based on division between predominantly elastic, (recoverable) strain, and plastic (irrecoverable) strain is a main principle of several methods of σ′p determination, which have been proposed over the past eighty-six years. Accumulated experiences have revealed that any laboratory procedure based on the oedometer test does not provide realistic value of preconsolidation stress, especially in heavy preconsolidated soils. The major reason for that results from the fact that the mechanism responsible for natural overconsolidation is more complicated than mechanical preloading. Therefore, there is a necessity to reevaluate effectiveness of standard methods and look for another solution of evaluation yield stress σ′Y in natural soils. This article presents the comparison between σ′Y determined for various soils with use of standard methods based on conventional oedometer test and yield stress determined on the basis of alternative procedures. The latter are represented by various approaches as e.g. based on SHANSEP procedure or initial shear modulus and others. The most promising among these alternative methods is a new concept based on dilatancy phenomenon that takes place during shearing of a dense soil. The parameter reflecting stress history is derived from pore pressure response and is based on characteristic values of Skempton's parameter A record. Consistency of data concerning stress history parameters profile obtained for deep subsoil on the basis of various methods is shown for comparison.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories