利用联合学习的力量来推动技术进步

Harmon Lee Bruce Chia
{"title":"利用联合学习的力量来推动技术进步","authors":"Harmon Lee Bruce Chia","doi":"10.54254/2977-3903/2/2023020","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) has emerged as a transformative paradigm in machine learning, advocating for decentralized, privacy-preserving model training. This study provides a comprehensive evaluation of contemporary FL frameworks TensorFlow Federated (TFF), PySyft, and FedJAX across three diverse datasets: CIFAR-10, IMDb reviews, and the UCI Heart Disease dataset. Our results demonstrate TFF's superior performance on image classification tasks, while PySyft excels in both efficiency and privacy for textual data. The study underscores the potential of FL in ensuring data privacy and model performance, yet emphasizes areas warranting improvement. As the volume of edge devices escalates and the need for data privacy intensifies, refining and expanding FL frameworks become essential for future machine learning deployments.","PeriodicalId":476183,"journal":{"name":"Advances in Engineering Innovation","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the power of federated learning to advance technology\",\"authors\":\"Harmon Lee Bruce Chia\",\"doi\":\"10.54254/2977-3903/2/2023020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) has emerged as a transformative paradigm in machine learning, advocating for decentralized, privacy-preserving model training. This study provides a comprehensive evaluation of contemporary FL frameworks TensorFlow Federated (TFF), PySyft, and FedJAX across three diverse datasets: CIFAR-10, IMDb reviews, and the UCI Heart Disease dataset. Our results demonstrate TFF's superior performance on image classification tasks, while PySyft excels in both efficiency and privacy for textual data. The study underscores the potential of FL in ensuring data privacy and model performance, yet emphasizes areas warranting improvement. As the volume of edge devices escalates and the need for data privacy intensifies, refining and expanding FL frameworks become essential for future machine learning deployments.\",\"PeriodicalId\":476183,\"journal\":{\"name\":\"Advances in Engineering Innovation\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2977-3903/2/2023020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2977-3903/2/2023020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)已经成为机器学习领域的一种变革范式,倡导去中心化、保护隐私的模型训练。本研究在三个不同的数据集(CIFAR-10、IMDb综述和UCI心脏病数据集)上对当代FL框架TensorFlow Federated (TFF)、PySyft和FedJAX进行了全面评估。我们的结果表明,TFF在图像分类任务上表现优异,而PySyft在文本数据的效率和隐私方面都表现出色。该研究强调了FL在确保数据隐私和模型性能方面的潜力,但也强调了需要改进的领域。随着边缘设备数量的增加和对数据隐私需求的增加,改进和扩展FL框架对于未来的机器学习部署至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing the power of federated learning to advance technology
Federated Learning (FL) has emerged as a transformative paradigm in machine learning, advocating for decentralized, privacy-preserving model training. This study provides a comprehensive evaluation of contemporary FL frameworks TensorFlow Federated (TFF), PySyft, and FedJAX across three diverse datasets: CIFAR-10, IMDb reviews, and the UCI Heart Disease dataset. Our results demonstrate TFF's superior performance on image classification tasks, while PySyft excels in both efficiency and privacy for textual data. The study underscores the potential of FL in ensuring data privacy and model performance, yet emphasizes areas warranting improvement. As the volume of edge devices escalates and the need for data privacy intensifies, refining and expanding FL frameworks become essential for future machine learning deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信