{"title":"列别杰夫-斯卡尔斯卡娅变换框架下的波包变换","authors":"Ajay K. Gupt, Akhilesh Prasad, U. K. Mandal","doi":"10.1007/s44146-023-00097-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define the wave-packet transform (WPT) involving Lebedev–Skalskaya transform (LS-transform) and establish some norm estimates of LS-wavelet, LS-wavelet transform, and Plancherel’s relation for WPT. Moreover, we obtain the Calderon-type reproducing formula using LS-transform theory and its convolution.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"73 - 89"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave packet transform in the framework of Lebedev–Skalskaya transforms\",\"authors\":\"Ajay K. Gupt, Akhilesh Prasad, U. K. Mandal\",\"doi\":\"10.1007/s44146-023-00097-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define the wave-packet transform (WPT) involving Lebedev–Skalskaya transform (LS-transform) and establish some norm estimates of LS-wavelet, LS-wavelet transform, and Plancherel’s relation for WPT. Moreover, we obtain the Calderon-type reproducing formula using LS-transform theory and its convolution.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"90 1-2\",\"pages\":\"73 - 89\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00097-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00097-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文定义了涉及列别杰夫-斯卡尔斯卡娅变换(LS-transform)的波包变换(WPT),并为 WPT 建立了 LS-小波、LS-小波变换和 Plancherel 关系的一些规范估计。此外,我们还利用 LS 变换理论及其卷积得到了卡尔德隆式重现公式。
Wave packet transform in the framework of Lebedev–Skalskaya transforms
In this paper, we define the wave-packet transform (WPT) involving Lebedev–Skalskaya transform (LS-transform) and establish some norm estimates of LS-wavelet, LS-wavelet transform, and Plancherel’s relation for WPT. Moreover, we obtain the Calderon-type reproducing formula using LS-transform theory and its convolution.