{"title":"基于磁流变离合器和虚拟现实的腹腔镜训练系统的初步评估","authors":"Bruno-Pier Busque, Louis-Philippe Lebel, Yves Collin, Jean-Sébastien Plante","doi":"10.1115/1.4063389","DOIUrl":null,"url":null,"abstract":"Abstract Although laparoscopy has revolutionized modern medicine, its training remains long and complex due to reduced haptic feedback and loss of depth perception. Training also poses an ethical challenge when performed on living patients, and access to cadavers is becoming rare and difficult. In the early 2000s, medical simulators began to appear to help mitigate these problems: virtual reality simulators (VRS) and physical reality simulators (PRS). Current VRS can provide guidance and performance evaluation with fewer instructors but are expensive and bulky. PRS, on the other hand, are less expensive, compact and offer haptic feedback through real physical interactions with mockup objects. However, they require guidance from an instructor, and cannot provide objective assessment or complex and realistic surgical scenarios. This paper assesses the potential of a VRS based on magneto-rheological (MR) actuators that could offer the haptic capabilities of current VRS with the size envelopes of PRS. Technical specifications for a laparoscopic VRS are extracted from the literature, a prototype is built and evaluated experimentally. In addition, three simulation scenarios are built and presented to surgeons to confirm simulation capabilities. In its current form, the MR-powered prototype is shown to meet targeted functional specifications but future work is needed to reduce friction, reduce size, and optimize packaging.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Assessment of a Laparoscopic Training System Using Magneto-Rheological Clutches and Virtual Reality\",\"authors\":\"Bruno-Pier Busque, Louis-Philippe Lebel, Yves Collin, Jean-Sébastien Plante\",\"doi\":\"10.1115/1.4063389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Although laparoscopy has revolutionized modern medicine, its training remains long and complex due to reduced haptic feedback and loss of depth perception. Training also poses an ethical challenge when performed on living patients, and access to cadavers is becoming rare and difficult. In the early 2000s, medical simulators began to appear to help mitigate these problems: virtual reality simulators (VRS) and physical reality simulators (PRS). Current VRS can provide guidance and performance evaluation with fewer instructors but are expensive and bulky. PRS, on the other hand, are less expensive, compact and offer haptic feedback through real physical interactions with mockup objects. However, they require guidance from an instructor, and cannot provide objective assessment or complex and realistic surgical scenarios. This paper assesses the potential of a VRS based on magneto-rheological (MR) actuators that could offer the haptic capabilities of current VRS with the size envelopes of PRS. Technical specifications for a laparoscopic VRS are extracted from the literature, a prototype is built and evaluated experimentally. In addition, three simulation scenarios are built and presented to surgeons to confirm simulation capabilities. In its current form, the MR-powered prototype is shown to meet targeted functional specifications but future work is needed to reduce friction, reduce size, and optimize packaging.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063389\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Preliminary Assessment of a Laparoscopic Training System Using Magneto-Rheological Clutches and Virtual Reality
Abstract Although laparoscopy has revolutionized modern medicine, its training remains long and complex due to reduced haptic feedback and loss of depth perception. Training also poses an ethical challenge when performed on living patients, and access to cadavers is becoming rare and difficult. In the early 2000s, medical simulators began to appear to help mitigate these problems: virtual reality simulators (VRS) and physical reality simulators (PRS). Current VRS can provide guidance and performance evaluation with fewer instructors but are expensive and bulky. PRS, on the other hand, are less expensive, compact and offer haptic feedback through real physical interactions with mockup objects. However, they require guidance from an instructor, and cannot provide objective assessment or complex and realistic surgical scenarios. This paper assesses the potential of a VRS based on magneto-rheological (MR) actuators that could offer the haptic capabilities of current VRS with the size envelopes of PRS. Technical specifications for a laparoscopic VRS are extracted from the literature, a prototype is built and evaluated experimentally. In addition, three simulation scenarios are built and presented to surgeons to confirm simulation capabilities. In its current form, the MR-powered prototype is shown to meet targeted functional specifications but future work is needed to reduce friction, reduce size, and optimize packaging.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.