染料敏化太阳能电池STEAM学习原型的开发,支持可持续发展教育

Q3 Engineering
Eko Hariyono, Nadi Suprapto, Isna Zakhiyah, Mohamad Hisyam Ismail
{"title":"染料敏化太阳能电池STEAM学习原型的开发,支持可持续发展教育","authors":"Eko Hariyono, Nadi Suprapto, Isna Zakhiyah, Mohamad Hisyam Ismail","doi":"10.21303/2461-4262.2023.002928","DOIUrl":null,"url":null,"abstract":"The increase in energy consumption and demand is a problem that needs to be resolved immediately, one of the viable solutions is to develop a Dye-Sensitized Solar Cell (DSSC) prototype. This solar cell precursor can also be used as a prototype of STEAM Education for improving students' knowledge, skills, and motivation. Consequently, it is aimed to identify the best preparation technique for DSSC and provide recommendations for designing STEAM Education prototypes in physics learning. This is a preliminary study that employs a quantitative-qualitative descriptive research approach. Based on the results of the output voltage produced by the DSSC, which was given three kinds of immersion variations, quantitative descriptive analysis was carried out to show the type of DSSC with the best preparation technique. Based on the research data, the best preparation technique for DSSC was obtained by immersing the TiO2 layer in a dye solution for 144 hours. There is a positive correlation between the duration of immersion in the dye solution and the voltage generated in the DSSC. Furthermore, the DSSC-based STEAM Education prototype could explain the concept of photo electricity effect, electromagnetic induction, converting light energy into motion, and various other science concepts in applying physics learning. The STEAM Education approach and integrating the three pillars of Education for Sustainable Development explain how science concepts can answer sustainable energy problems related to the environment, society, and economy. This implies preparing students to be the next generation of leaders with the knowledge and abilities to carry on with long-term development plans","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of dye-sensitized solar cells STEAM learning prototype for supporting educational for sustainable development\",\"authors\":\"Eko Hariyono, Nadi Suprapto, Isna Zakhiyah, Mohamad Hisyam Ismail\",\"doi\":\"10.21303/2461-4262.2023.002928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in energy consumption and demand is a problem that needs to be resolved immediately, one of the viable solutions is to develop a Dye-Sensitized Solar Cell (DSSC) prototype. This solar cell precursor can also be used as a prototype of STEAM Education for improving students' knowledge, skills, and motivation. Consequently, it is aimed to identify the best preparation technique for DSSC and provide recommendations for designing STEAM Education prototypes in physics learning. This is a preliminary study that employs a quantitative-qualitative descriptive research approach. Based on the results of the output voltage produced by the DSSC, which was given three kinds of immersion variations, quantitative descriptive analysis was carried out to show the type of DSSC with the best preparation technique. Based on the research data, the best preparation technique for DSSC was obtained by immersing the TiO2 layer in a dye solution for 144 hours. There is a positive correlation between the duration of immersion in the dye solution and the voltage generated in the DSSC. Furthermore, the DSSC-based STEAM Education prototype could explain the concept of photo electricity effect, electromagnetic induction, converting light energy into motion, and various other science concepts in applying physics learning. The STEAM Education approach and integrating the three pillars of Education for Sustainable Development explain how science concepts can answer sustainable energy problems related to the environment, society, and economy. This implies preparing students to be the next generation of leaders with the knowledge and abilities to carry on with long-term development plans\",\"PeriodicalId\":11804,\"journal\":{\"name\":\"EUREKA: Physics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUREKA: Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21303/2461-4262.2023.002928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUREKA: Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2461-4262.2023.002928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

能源消耗和需求的增加是一个需要立即解决的问题,可行的解决方案之一是开发染料敏化太阳能电池(DSSC)原型。这个太阳能电池前体也可以用作STEAM教育的原型,以提高学生的知识,技能和动力。因此,本文旨在确定DSSC的最佳准备技术,并为设计物理学习中的STEAM教育原型提供建议。这是一项采用定量定性描述性研究方法的初步研究。根据三种浸渍变化下DSSC输出电压的结果,进行了定量描述分析,得出了最佳制备工艺的DSSC类型。根据研究数据,TiO2层在染料溶液中浸泡144小时是制备DSSC的最佳工艺。在染料溶液中浸泡的时间与DSSC中产生的电压之间存在正相关关系。此外,基于dssc的STEAM教育原型可以解释光电效应、电磁感应、光能转化为运动等各种科学概念在应用物理学习中的应用。STEAM教育方法结合可持续发展教育的三大支柱,解释了科学概念如何解决与环境、社会和经济相关的可持续能源问题。这意味着培养学生成为具有知识和能力的下一代领导者,以进行长期发展计划
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of dye-sensitized solar cells STEAM learning prototype for supporting educational for sustainable development
The increase in energy consumption and demand is a problem that needs to be resolved immediately, one of the viable solutions is to develop a Dye-Sensitized Solar Cell (DSSC) prototype. This solar cell precursor can also be used as a prototype of STEAM Education for improving students' knowledge, skills, and motivation. Consequently, it is aimed to identify the best preparation technique for DSSC and provide recommendations for designing STEAM Education prototypes in physics learning. This is a preliminary study that employs a quantitative-qualitative descriptive research approach. Based on the results of the output voltage produced by the DSSC, which was given three kinds of immersion variations, quantitative descriptive analysis was carried out to show the type of DSSC with the best preparation technique. Based on the research data, the best preparation technique for DSSC was obtained by immersing the TiO2 layer in a dye solution for 144 hours. There is a positive correlation between the duration of immersion in the dye solution and the voltage generated in the DSSC. Furthermore, the DSSC-based STEAM Education prototype could explain the concept of photo electricity effect, electromagnetic induction, converting light energy into motion, and various other science concepts in applying physics learning. The STEAM Education approach and integrating the three pillars of Education for Sustainable Development explain how science concepts can answer sustainable energy problems related to the environment, society, and economy. This implies preparing students to be the next generation of leaders with the knowledge and abilities to carry on with long-term development plans
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EUREKA: Physics and Engineering
EUREKA: Physics and Engineering Engineering-Engineering (all)
CiteScore
1.90
自引率
0.00%
发文量
78
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信