Eliot Crowe, Yimin Chen, Hayden Reeve, David Yuill, Amir Ebrahimifakhar, Yuxuan Chen, Lucas Troup, Amanda Smith, Jessica Granderson
{"title":"商业建筑暖通空调故障发生率的实证分析","authors":"Eliot Crowe, Yimin Chen, Hayden Reeve, David Yuill, Amir Ebrahimifakhar, Yuxuan Chen, Lucas Troup, Amanda Smith, Jessica Granderson","doi":"10.1080/23744731.2023.2263324","DOIUrl":null,"url":null,"abstract":"Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study, employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on 20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial building operation.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"43 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Analysis of the Prevalence of HVAC Faults in Commercial Buildings\",\"authors\":\"Eliot Crowe, Yimin Chen, Hayden Reeve, David Yuill, Amir Ebrahimifakhar, Yuxuan Chen, Lucas Troup, Amanda Smith, Jessica Granderson\",\"doi\":\"10.1080/23744731.2023.2263324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study, employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on 20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial building operation.\",\"PeriodicalId\":21556,\"journal\":{\"name\":\"Science and Technology for the Built Environment\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology for the Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23744731.2023.2263324\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2263324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Empirical Analysis of the Prevalence of HVAC Faults in Commercial Buildings
Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study, employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on 20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial building operation.
期刊介绍:
Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.