隐藏全彩图像到音频与视觉增强通过残差网络

IF 1.8 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hwai-Tsu Hu, Tung-Tsun Lee
{"title":"隐藏全彩图像到音频与视觉增强通过残差网络","authors":"Hwai-Tsu Hu, Tung-Tsun Lee","doi":"10.3390/cryptography7040047","DOIUrl":null,"url":null,"abstract":"Watermarking is a viable approach for safeguarding the proprietary rights of digital media. This study introduces an innovative fast Fourier transform (FFT)-based phase modulation (PM) scheme that facilitates efficient and effective blind audio watermarking at a remarkable rate of 508.85 numeric values per second while still retaining the original quality. Such a payload capacity makes it possible to embed a full-color image of 64 × 64 pixels within an audio signal of just 24.15 s. To bolster the security of watermark images, we have also implemented the Arnold transform in conjunction with chaotic encryption. Our comprehensive analysis and evaluation confirm that the proposed FFT–PM scheme exhibits exceptional imperceptibility, rendering the hidden watermark virtually undetectable. Additionally, the FFT–PM scheme shows impressive robustness against common signal-processing attacks. To further enhance the visual rendition of the recovered color watermarks, we propose using residual neural networks to perform image denoising and super-resolution reconstruction after retrieving the watermarks. The utilization of the residual networks contributes to noticeable improvements in perceptual quality, resulting in higher levels of zero-normalized cross-correlation in cases where the watermarks are severely damaged.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":"21 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hiding Full-Color Images into Audio with Visual Enhancement via Residual Networks\",\"authors\":\"Hwai-Tsu Hu, Tung-Tsun Lee\",\"doi\":\"10.3390/cryptography7040047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watermarking is a viable approach for safeguarding the proprietary rights of digital media. This study introduces an innovative fast Fourier transform (FFT)-based phase modulation (PM) scheme that facilitates efficient and effective blind audio watermarking at a remarkable rate of 508.85 numeric values per second while still retaining the original quality. Such a payload capacity makes it possible to embed a full-color image of 64 × 64 pixels within an audio signal of just 24.15 s. To bolster the security of watermark images, we have also implemented the Arnold transform in conjunction with chaotic encryption. Our comprehensive analysis and evaluation confirm that the proposed FFT–PM scheme exhibits exceptional imperceptibility, rendering the hidden watermark virtually undetectable. Additionally, the FFT–PM scheme shows impressive robustness against common signal-processing attacks. To further enhance the visual rendition of the recovered color watermarks, we propose using residual neural networks to perform image denoising and super-resolution reconstruction after retrieving the watermarks. The utilization of the residual networks contributes to noticeable improvements in perceptual quality, resulting in higher levels of zero-normalized cross-correlation in cases where the watermarks are severely damaged.\",\"PeriodicalId\":36072,\"journal\":{\"name\":\"Cryptography\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography7040047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7040047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

水印技术是保护数字媒体版权的一种可行方法。本研究介绍了一种创新的基于快速傅立叶变换(FFT)的相位调制(PM)方案,该方案以每秒508.85个数值的惊人速率促进了高效和有效的盲音频水印,同时仍然保持原始质量。这样的有效载荷能力使得在24.15秒的音频信号内嵌入64 × 64像素的全彩色图像成为可能。为了加强水印图像的安全性,我们还实现了阿诺德变换与混沌加密。我们的综合分析和评估证实,所提出的FFT-PM方案具有出色的不可感知性,使隐藏的水印几乎无法检测到。此外,FFT-PM方案对常见的信号处理攻击表现出令人印象深刻的鲁棒性。为了进一步增强恢复的彩色水印的视觉再现性,我们提出在提取水印后使用残差神经网络进行图像去噪和超分辨率重建。残差网络的使用有助于显著改善感知质量,在水印严重损坏的情况下,产生更高水平的零归一化互相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hiding Full-Color Images into Audio with Visual Enhancement via Residual Networks
Watermarking is a viable approach for safeguarding the proprietary rights of digital media. This study introduces an innovative fast Fourier transform (FFT)-based phase modulation (PM) scheme that facilitates efficient and effective blind audio watermarking at a remarkable rate of 508.85 numeric values per second while still retaining the original quality. Such a payload capacity makes it possible to embed a full-color image of 64 × 64 pixels within an audio signal of just 24.15 s. To bolster the security of watermark images, we have also implemented the Arnold transform in conjunction with chaotic encryption. Our comprehensive analysis and evaluation confirm that the proposed FFT–PM scheme exhibits exceptional imperceptibility, rendering the hidden watermark virtually undetectable. Additionally, the FFT–PM scheme shows impressive robustness against common signal-processing attacks. To further enhance the visual rendition of the recovered color watermarks, we propose using residual neural networks to perform image denoising and super-resolution reconstruction after retrieving the watermarks. The utilization of the residual networks contributes to noticeable improvements in perceptual quality, resulting in higher levels of zero-normalized cross-correlation in cases where the watermarks are severely damaged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryptography
Cryptography Mathematics-Applied Mathematics
CiteScore
3.80
自引率
6.20%
发文量
53
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信