低秩张量分解与逼近

IF 0.9 4区 数学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Jiawang Nie, Li Wang, Zequn Zheng
{"title":"低秩张量分解与逼近","authors":"Jiawang Nie, Li Wang, Zequn Zheng","doi":"10.1007/s40305-023-00455-7","DOIUrl":null,"url":null,"abstract":"Abstract There exist linear relations among tensor entries of low rank tensors. These linear relations can be expressed by multi-linear polynomials, which are called generating polynomials. We use generating polynomials to compute tensor rank decompositions and low rank tensor approximations. We prove that this gives a quasi-optimal low rank tensor approximation if the given tensor is sufficiently close to a low rank one.","PeriodicalId":44782,"journal":{"name":"Journal of the Operations Research Society of China","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Rank Tensor Decompositions and Approximations\",\"authors\":\"Jiawang Nie, Li Wang, Zequn Zheng\",\"doi\":\"10.1007/s40305-023-00455-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There exist linear relations among tensor entries of low rank tensors. These linear relations can be expressed by multi-linear polynomials, which are called generating polynomials. We use generating polynomials to compute tensor rank decompositions and low rank tensor approximations. We prove that this gives a quasi-optimal low rank tensor approximation if the given tensor is sufficiently close to a low rank one.\",\"PeriodicalId\":44782,\"journal\":{\"name\":\"Journal of the Operations Research Society of China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40305-023-00455-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40305-023-00455-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要低秩张量张量项之间存在线性关系。这些线性关系可以用多线性多项式表示,称为生成多项式。我们使用生成多项式来计算张量秩分解和低秩张量近似。我们证明了如果给定张量足够接近低秩张量,则给出了准最优低秩张量近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Rank Tensor Decompositions and Approximations
Abstract There exist linear relations among tensor entries of low rank tensors. These linear relations can be expressed by multi-linear polynomials, which are called generating polynomials. We use generating polynomials to compute tensor rank decompositions and low rank tensor approximations. We prove that this gives a quasi-optimal low rank tensor approximation if the given tensor is sufficiently close to a low rank one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of China
Journal of the Operations Research Society of China OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.30
自引率
0.00%
发文量
77
期刊介绍: Journal of the Operations Research Society of China is the flagship journal of the Operations Research Society of China. Its primary goal is to promote researches and applications of all aspects of operational research. This journal provides a forum for practioners, academics and researchers in operational research and related fields. It will reflect the rapid social and economic development of China and lead to new problems and challenges which require new operations research methodology and techniques. It will publish 4 issues of one volume per year, including invited reviews, regular papers, short communications, book reviews and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信