Wan-Lidl多项式微分均匀性的界

Li-An Chen, Robert S. Coulter
{"title":"Wan-Lidl多项式微分均匀性的界","authors":"Li-An Chen, Robert S. Coulter","doi":"10.1007/s12095-023-00634-6","DOIUrl":null,"url":null,"abstract":"We study the differential uniformity of the Wan-Lidl polynomials over finite fields. A general upper bound, independent of the order of the field, is established. Additional bounds are established in settings where one of the parameters is restricted. In particular, we establish a class of permutation polynomials which have differential uniformity at most 5 over fields of order 3 mod 4, irrespective of the field size. Computational results are also given.","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"469 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the differential uniformity of the Wan-Lidl polynomials\",\"authors\":\"Li-An Chen, Robert S. Coulter\",\"doi\":\"10.1007/s12095-023-00634-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the differential uniformity of the Wan-Lidl polynomials over finite fields. A general upper bound, independent of the order of the field, is established. Additional bounds are established in settings where one of the parameters is restricted. In particular, we establish a class of permutation polynomials which have differential uniformity at most 5 over fields of order 3 mod 4, irrespective of the field size. Computational results are also given.\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"469 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-023-00634-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00634-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了有限域上Wan-Lidl多项式的微分均匀性。建立了一个与场阶无关的一般上界。在其中一个参数受到限制的设置中建立附加界限。特别地,我们建立了一类与域大小无关,在3阶mod 4的域上微分均匀性最多为5的置换多项式。并给出了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on the differential uniformity of the Wan-Lidl polynomials
We study the differential uniformity of the Wan-Lidl polynomials over finite fields. A general upper bound, independent of the order of the field, is established. Additional bounds are established in settings where one of the parameters is restricted. In particular, we establish a class of permutation polynomials which have differential uniformity at most 5 over fields of order 3 mod 4, irrespective of the field size. Computational results are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信