{"title":"具有时变参数的最大似然","authors":"Alberto Lanconelli, Christopher S. A. Lauria","doi":"10.1007/s00362-023-01497-y","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of tracking an unknown time varying parameter that characterizes the probabilistic evolution of a sequence of independent observations. To this aim, we propose a stochastic gradient descent-based recursive scheme in which the log-likelihood of the observations acts as time varying gain function. We prove convergence in mean-square error in a suitable neighbourhood of the unknown time varying parameter and illustrate the details of our findings in the case where data are generated from distributions belonging to the exponential family.","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"40 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood With a Time Varying Parameter\",\"authors\":\"Alberto Lanconelli, Christopher S. A. Lauria\",\"doi\":\"10.1007/s00362-023-01497-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the problem of tracking an unknown time varying parameter that characterizes the probabilistic evolution of a sequence of independent observations. To this aim, we propose a stochastic gradient descent-based recursive scheme in which the log-likelihood of the observations acts as time varying gain function. We prove convergence in mean-square error in a suitable neighbourhood of the unknown time varying parameter and illustrate the details of our findings in the case where data are generated from distributions belonging to the exponential family.\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01497-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00362-023-01497-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Abstract We consider the problem of tracking an unknown time varying parameter that characterizes the probabilistic evolution of a sequence of independent observations. To this aim, we propose a stochastic gradient descent-based recursive scheme in which the log-likelihood of the observations acts as time varying gain function. We prove convergence in mean-square error in a suitable neighbourhood of the unknown time varying parameter and illustrate the details of our findings in the case where data are generated from distributions belonging to the exponential family.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.