正则几何中的近似与同伦

IF 1.3 1区 数学 Q1 MATHEMATICS
Wojciech Kucharz
{"title":"正则几何中的近似与同伦","authors":"Wojciech Kucharz","doi":"10.1112/s0010437x23007522","DOIUrl":null,"url":null,"abstract":"Let $X$ , $Y$ be nonsingular real algebraic sets. A map $\\varphi \\colon X \\to Y$ is said to be $k$ -regulous, where $k$ is a nonnegative integer, if it is of class $\\mathcal {C}^k$ and the restriction of $\\varphi$ to some Zariski open dense subset of $X$ is a regular map. Assuming that $Y$ is uniformly rational, and $k \\geq 1$ , we prove that a $\\mathcal {C}^{\\infty }$ map $f \\colon X \\to Y$ can be approximated by $k$ -regulous maps in the $\\mathcal {C}^k$ topology if and only if $f$ is homotopic to a $k$ -regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking $Y=\\mathbb {S}^p$ (the unit $p$ -dimensional sphere), we obtain several new results on approximation of $\\mathcal {C}^{\\infty }$ maps from $X$ into $\\mathbb {S}^p$ by $k$ -regulous maps in the $\\mathcal {C}^k$ topology, for $k \\geq 0$ .","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":" 41","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation and homotopy in regulous geometry\",\"authors\":\"Wojciech Kucharz\",\"doi\":\"10.1112/s0010437x23007522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ , $Y$ be nonsingular real algebraic sets. A map $\\\\varphi \\\\colon X \\\\to Y$ is said to be $k$ -regulous, where $k$ is a nonnegative integer, if it is of class $\\\\mathcal {C}^k$ and the restriction of $\\\\varphi$ to some Zariski open dense subset of $X$ is a regular map. Assuming that $Y$ is uniformly rational, and $k \\\\geq 1$ , we prove that a $\\\\mathcal {C}^{\\\\infty }$ map $f \\\\colon X \\\\to Y$ can be approximated by $k$ -regulous maps in the $\\\\mathcal {C}^k$ topology if and only if $f$ is homotopic to a $k$ -regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking $Y=\\\\mathbb {S}^p$ (the unit $p$ -dimensional sphere), we obtain several new results on approximation of $\\\\mathcal {C}^{\\\\infty }$ maps from $X$ into $\\\\mathbb {S}^p$ by $k$ -regulous maps in the $\\\\mathcal {C}^k$ topology, for $k \\\\geq 0$ .\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\" 41\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x23007522\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/s0010437x23007522","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$X$, $Y$为非奇异实代数集。映射$\varphi \colon X \to Y$被称为$k$ -正则,其中$k$是一个非负整数,如果它属于$\mathcal {C}^k$类,并且$\varphi$对$X$的某个Zariski开密集子集的限制是一个正则映射。假设$Y$是一致有理的,并且$k \geq 1$,我们证明了$\mathcal {C}^{\infty }$映射$f \colon X \to Y$可以被$\mathcal {C}^k$拓扑中的$k$ -正则映射近似当且仅当$f$与$k$ -正则映射同伦。一类一致有理实数代数变体包括球面、格拉斯曼曲面和有理非奇异曲面,它们在非奇异中心爆破下是稳定的。此外,以$Y=\mathbb {S}^p$(单位$p$维球体)为例,对于$k \geq 0$,我们获得了通过$\mathcal {C}^k$拓扑中的$k$ -正则映射将$\mathcal {C}^{\infty }$映射从$X$逼近到$\mathbb {S}^p$的几个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation and homotopy in regulous geometry
Let $X$ , $Y$ be nonsingular real algebraic sets. A map $\varphi \colon X \to Y$ is said to be $k$ -regulous, where $k$ is a nonnegative integer, if it is of class $\mathcal {C}^k$ and the restriction of $\varphi$ to some Zariski open dense subset of $X$ is a regular map. Assuming that $Y$ is uniformly rational, and $k \geq 1$ , we prove that a $\mathcal {C}^{\infty }$ map $f \colon X \to Y$ can be approximated by $k$ -regulous maps in the $\mathcal {C}^k$ topology if and only if $f$ is homotopic to a $k$ -regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking $Y=\mathbb {S}^p$ (the unit $p$ -dimensional sphere), we obtain several new results on approximation of $\mathcal {C}^{\infty }$ maps from $X$ into $\mathbb {S}^p$ by $k$ -regulous maps in the $\mathcal {C}^k$ topology, for $k \geq 0$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信