Wei Liang, Jun Zhao, Yan Liu, Yan Liang, Jingwen Li
{"title":"基于区块链的集成物联网安全通信公平资源分配","authors":"Wei Liang, Jun Zhao, Yan Liu, Yan Liang, Jingwen Li","doi":"10.1186/s13634-023-01075-2","DOIUrl":null,"url":null,"abstract":"Abstract The emerging Space-Air-Ground, Artificial intelligence, blockchain and Vehicle-to-everything technology in Integrated Internet of Things (IoT) enables vehicles to communicate with other vehicles and roadside units (RSU), which improves communication efficiency and driving safety. Due to the rich data in the Integrated IoT, it is easy for illegal persons to steal data or deceive users. While reasonably allocating resources to complete the transmission task, it is still a challenge to ensure the communication security of vehicle users in Integrated IoT. In this paper, we study the cost of vehicle users transmitting tasks by Vehicle to Infrastructure and Vehicle to Vehicle (V2V) in Integrated IoT. In order to protect the information security, we establish the identity authentication and matching model to obtain a better channel environment of Integrated IoT. Moreover, we consider dynamic pricing based on bandwidth resource occupancy to ensure user experience and server load in Integrated IoT. Under the constraints of task tolerable delay, we fix the bandwidth on the V2V side and decouple the task decomposition and bandwidth allocation in Integrated IoT. Then, we propose algorithms Blockchain-based Vehicle Identity Authentication (BVIA) and Delay Weight Fairness Bandwidth Allocation (DWFBA). In this way, vehicle users and RSUs entering the Integrated IoT system are authenticated and matched with devices with good trust value, and the fairness of users resource allocation is guaranteed. Simulation results show that BVIA algorithm can reduce communication overhead, and DWFBA algorithm can control user costs and effectively reduce the number of task failures in Integrated IoT.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fairness resource allocation based on blockchain for secure communication in integrated IoT\",\"authors\":\"Wei Liang, Jun Zhao, Yan Liu, Yan Liang, Jingwen Li\",\"doi\":\"10.1186/s13634-023-01075-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The emerging Space-Air-Ground, Artificial intelligence, blockchain and Vehicle-to-everything technology in Integrated Internet of Things (IoT) enables vehicles to communicate with other vehicles and roadside units (RSU), which improves communication efficiency and driving safety. Due to the rich data in the Integrated IoT, it is easy for illegal persons to steal data or deceive users. While reasonably allocating resources to complete the transmission task, it is still a challenge to ensure the communication security of vehicle users in Integrated IoT. In this paper, we study the cost of vehicle users transmitting tasks by Vehicle to Infrastructure and Vehicle to Vehicle (V2V) in Integrated IoT. In order to protect the information security, we establish the identity authentication and matching model to obtain a better channel environment of Integrated IoT. Moreover, we consider dynamic pricing based on bandwidth resource occupancy to ensure user experience and server load in Integrated IoT. Under the constraints of task tolerable delay, we fix the bandwidth on the V2V side and decouple the task decomposition and bandwidth allocation in Integrated IoT. Then, we propose algorithms Blockchain-based Vehicle Identity Authentication (BVIA) and Delay Weight Fairness Bandwidth Allocation (DWFBA). In this way, vehicle users and RSUs entering the Integrated IoT system are authenticated and matched with devices with good trust value, and the fairness of users resource allocation is guaranteed. Simulation results show that BVIA algorithm can reduce communication overhead, and DWFBA algorithm can control user costs and effectively reduce the number of task failures in Integrated IoT.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01075-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01075-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fairness resource allocation based on blockchain for secure communication in integrated IoT
Abstract The emerging Space-Air-Ground, Artificial intelligence, blockchain and Vehicle-to-everything technology in Integrated Internet of Things (IoT) enables vehicles to communicate with other vehicles and roadside units (RSU), which improves communication efficiency and driving safety. Due to the rich data in the Integrated IoT, it is easy for illegal persons to steal data or deceive users. While reasonably allocating resources to complete the transmission task, it is still a challenge to ensure the communication security of vehicle users in Integrated IoT. In this paper, we study the cost of vehicle users transmitting tasks by Vehicle to Infrastructure and Vehicle to Vehicle (V2V) in Integrated IoT. In order to protect the information security, we establish the identity authentication and matching model to obtain a better channel environment of Integrated IoT. Moreover, we consider dynamic pricing based on bandwidth resource occupancy to ensure user experience and server load in Integrated IoT. Under the constraints of task tolerable delay, we fix the bandwidth on the V2V side and decouple the task decomposition and bandwidth allocation in Integrated IoT. Then, we propose algorithms Blockchain-based Vehicle Identity Authentication (BVIA) and Delay Weight Fairness Bandwidth Allocation (DWFBA). In this way, vehicle users and RSUs entering the Integrated IoT system are authenticated and matched with devices with good trust value, and the fairness of users resource allocation is guaranteed. Simulation results show that BVIA algorithm can reduce communication overhead, and DWFBA algorithm can control user costs and effectively reduce the number of task failures in Integrated IoT.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.