矩形多参数特征值问题的数值方法,并应用于寻找最优ARMA和LTI模型

IF 1.8 3区 数学 Q1 MATHEMATICS
Michiel E. Hochstenbach, Tomaž Košir, Bor Plestenjak
{"title":"矩形多参数特征值问题的数值方法,并应用于寻找最优ARMA和LTI模型","authors":"Michiel E. Hochstenbach, Tomaž Košir, Bor Plestenjak","doi":"10.1002/nla.2540","DOIUrl":null,"url":null,"abstract":"Abstract Standard multiparameter eigenvalue problems (MEPs) are systems of linear ‐parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time‐invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical methods for rectangular multiparameter eigenvalue problems, with applications to finding optimal ARMA and LTI models\",\"authors\":\"Michiel E. Hochstenbach, Tomaž Košir, Bor Plestenjak\",\"doi\":\"10.1002/nla.2540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Standard multiparameter eigenvalue problems (MEPs) are systems of linear ‐parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time‐invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2540\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nla.2540","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

标准多参数特征值问题(mep)是线性参数方阵铅笔系统。最近,出现了一种新的多参数特征值问题形式:一个只有一个多元矩形矩阵铅笔的矩形MEP (RMEP),我们寻找铅笔的秩不满的参数组合。应用包括寻找最优最小二乘自回归移动平均(ARMA)模型和自治线性时不变(LTI)动力系统的最优最小二乘实现。对于线性和多项式rmep,我们给出了解的数量,并展示了如何通过转换成标准的rmep来数值解决这些问题。对于变换,我们给出了具有特定单项式结构的二次多元矩阵多项式的新的线性化,并考虑了矩形和方形多元矩阵多项式的混合系统。这种数值方法在计算上似乎比block Macaulay方法更有吸引力,block Macaulay方法是目前唯一可用的多项式rmep数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods for rectangular multiparameter eigenvalue problems, with applications to finding optimal ARMA and LTI models
Abstract Standard multiparameter eigenvalue problems (MEPs) are systems of linear ‐parameter square matrix pencils. Recently, a new form of multiparameter eigenvalue problems has emerged: a rectangular MEP (RMEP) with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters for which the rank of the pencil is not full. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time‐invariant (LTI) dynamical system. For linear and polynomial RMEPs, we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. For the transformation we provide new linearizations for quadratic multivariate matrix polynomials with a specific structure of monomials and consider mixed systems of rectangular and square multivariate matrix polynomials. This numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信