{"title":"Erdős-Hooley函数均值的上界","authors":"Dimitris Koukoulopoulos, Terence Tao","doi":"10.1112/plms.12572","DOIUrl":null,"url":null,"abstract":"Abstract The Erdős–Hooley Delta function is defined for as . We prove that for all . This improves on earlier work of Hooley, Hall–Tenenbaum, and La Bretèche–Tenenbaum.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" 22","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An upper bound on the mean value of the Erdős–Hooley Delta function\",\"authors\":\"Dimitris Koukoulopoulos, Terence Tao\",\"doi\":\"10.1112/plms.12572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Erdős–Hooley Delta function is defined for as . We prove that for all . This improves on earlier work of Hooley, Hall–Tenenbaum, and La Bretèche–Tenenbaum.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" 22\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12572\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12572","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
Erdős-Hooley函数定义为。我们为所有人证明这一点。这改进了Hooley, Hall-Tenenbaum和La bret che - tenenbaum的早期工作。
An upper bound on the mean value of the Erdős–Hooley Delta function
Abstract The Erdős–Hooley Delta function is defined for as . We prove that for all . This improves on earlier work of Hooley, Hall–Tenenbaum, and La Bretèche–Tenenbaum.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.