{"title":"以氧化锌石墨氮化碳为吸附剂的分散固相萃取-分散液液微萃取法测定果汁中有机氯农药","authors":"Bereket Tesfaye, Abera Gure, Tsegaye Girma Asere","doi":"10.1080/03067319.2023.2269384","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn the present work, we proposed a novel method; dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for selective extraction and preconcentration of organochlorine pesticides in fruit juice samples. Parameters affecting the performances of both extraction steps have been rigorously studied and optimized. For the dispersive solid-phase extraction, zinc oxide-graphite carbon nitride was used as a sorbent for the first time. In the extraction, 100 mg of the sorbent was added to an aqueous solution. The content was then vortexed thoroughly to disperse the sorbent into the sample solution and to enhance the transfer of the analytes to the extraction phase (sorbent). The extracted analytes were then desorbed using 500 μL methanol. Subsequently, for the dispersive liquid-liquid microextraction, 50 μL of chloroform (as an extractant) was added to methanol-desorbed analytes and then rapidly injected into 5 mL deionised water. After centrifuging, 35 μL of the sedimented phase was withdrawn into an auto-sampler vial, and then 1 μL was injected into a gas chromatography-mass spectroscopy analysis. Under the optimum conditions, the proposed method showed satisfactory analytical performance characteristics: linearity ranging from 0.1–10.24 µg/L with coefficients of determinations (R2) from 0.9948–0.9995; The limit of detections ranging from 0.004–0.01 µg/L; intra- and inter-day precisions expressed as relative standard deviations ranging from 1.1–7.8%, and extraction recoveries varying from 80.8–109.2%. Generally, the proposed method is selective and efficient for the extraction and preconcentration of the target analytes from fruit juices and related matrices.KEYWORDS: Organochlorine pesticidesdispersive solid phase extractiondispersive liquid–liquid microextractionzinc oxide-graphite carbon nitridefruit juices AcknowledgmentsWe are grateful to the College of Natural Sciences, Jimma University for the financial support. Tesfaye, B also acknowledges Dire Dawa University for sponsoring his PhD study.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":" 38","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersive solid phase extraction using zinc oxide graphitic carbon nitride as sorbent followed by dispersive liquid–liquid microextraction for the determination of organochlorine pesticides from fruit juice samples\",\"authors\":\"Bereket Tesfaye, Abera Gure, Tsegaye Girma Asere\",\"doi\":\"10.1080/03067319.2023.2269384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTIn the present work, we proposed a novel method; dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for selective extraction and preconcentration of organochlorine pesticides in fruit juice samples. Parameters affecting the performances of both extraction steps have been rigorously studied and optimized. For the dispersive solid-phase extraction, zinc oxide-graphite carbon nitride was used as a sorbent for the first time. In the extraction, 100 mg of the sorbent was added to an aqueous solution. The content was then vortexed thoroughly to disperse the sorbent into the sample solution and to enhance the transfer of the analytes to the extraction phase (sorbent). The extracted analytes were then desorbed using 500 μL methanol. Subsequently, for the dispersive liquid-liquid microextraction, 50 μL of chloroform (as an extractant) was added to methanol-desorbed analytes and then rapidly injected into 5 mL deionised water. After centrifuging, 35 μL of the sedimented phase was withdrawn into an auto-sampler vial, and then 1 μL was injected into a gas chromatography-mass spectroscopy analysis. Under the optimum conditions, the proposed method showed satisfactory analytical performance characteristics: linearity ranging from 0.1–10.24 µg/L with coefficients of determinations (R2) from 0.9948–0.9995; The limit of detections ranging from 0.004–0.01 µg/L; intra- and inter-day precisions expressed as relative standard deviations ranging from 1.1–7.8%, and extraction recoveries varying from 80.8–109.2%. Generally, the proposed method is selective and efficient for the extraction and preconcentration of the target analytes from fruit juices and related matrices.KEYWORDS: Organochlorine pesticidesdispersive solid phase extractiondispersive liquid–liquid microextractionzinc oxide-graphite carbon nitridefruit juices AcknowledgmentsWe are grateful to the College of Natural Sciences, Jimma University for the financial support. Tesfaye, B also acknowledges Dire Dawa University for sponsoring his PhD study.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":13973,\"journal\":{\"name\":\"International Journal of Environmental Analytical Chemistry\",\"volume\":\" 38\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Analytical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03067319.2023.2269384\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2269384","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Dispersive solid phase extraction using zinc oxide graphitic carbon nitride as sorbent followed by dispersive liquid–liquid microextraction for the determination of organochlorine pesticides from fruit juice samples
ABSTRACTIn the present work, we proposed a novel method; dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for selective extraction and preconcentration of organochlorine pesticides in fruit juice samples. Parameters affecting the performances of both extraction steps have been rigorously studied and optimized. For the dispersive solid-phase extraction, zinc oxide-graphite carbon nitride was used as a sorbent for the first time. In the extraction, 100 mg of the sorbent was added to an aqueous solution. The content was then vortexed thoroughly to disperse the sorbent into the sample solution and to enhance the transfer of the analytes to the extraction phase (sorbent). The extracted analytes were then desorbed using 500 μL methanol. Subsequently, for the dispersive liquid-liquid microextraction, 50 μL of chloroform (as an extractant) was added to methanol-desorbed analytes and then rapidly injected into 5 mL deionised water. After centrifuging, 35 μL of the sedimented phase was withdrawn into an auto-sampler vial, and then 1 μL was injected into a gas chromatography-mass spectroscopy analysis. Under the optimum conditions, the proposed method showed satisfactory analytical performance characteristics: linearity ranging from 0.1–10.24 µg/L with coefficients of determinations (R2) from 0.9948–0.9995; The limit of detections ranging from 0.004–0.01 µg/L; intra- and inter-day precisions expressed as relative standard deviations ranging from 1.1–7.8%, and extraction recoveries varying from 80.8–109.2%. Generally, the proposed method is selective and efficient for the extraction and preconcentration of the target analytes from fruit juices and related matrices.KEYWORDS: Organochlorine pesticidesdispersive solid phase extractiondispersive liquid–liquid microextractionzinc oxide-graphite carbon nitridefruit juices AcknowledgmentsWe are grateful to the College of Natural Sciences, Jimma University for the financial support. Tesfaye, B also acknowledges Dire Dawa University for sponsoring his PhD study.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples.
The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal.
Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.