基于NURBS曲面曲率的光学自由曲面超精密车削刀具轨迹规划方法

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Machines Pub Date : 2023-11-09 DOI:10.3390/machines11111017
Xuchu Wang, Qingshun Bai, Siyu Gao, Liang Zhao, Kai Cheng
{"title":"基于NURBS曲面曲率的光学自由曲面超精密车削刀具轨迹规划方法","authors":"Xuchu Wang, Qingshun Bai, Siyu Gao, Liang Zhao, Kai Cheng","doi":"10.3390/machines11111017","DOIUrl":null,"url":null,"abstract":"As the applications for freeform optical surfaces continue to grow, the need for high-precision machining methods is becoming more and more of a necessity. Different toolpath strategies for the ultra-high precision turning of freeform surfaces can have a significant impact on the quality of the machined surfaces. This paper presents a novel toolpath planning method for ultra-precision slow tool servo diamond turning based on the curvature of freeform surfaces. The method analyzes the differential geometric properties of freeform surfaces by reconstructing NURBS freeform surfaces. A mathematical model is constructed based on the parameters of different positions of the freeform surface, toolpath parameters, and tool residual height. Appropriate toolpath parameters can be calculated to generate the optical freeform ultra-precision slow tool servo diamond turning toolpath. Compared with the toolpaths generated by the traditional Archimedes spiral method, the ultra-precision slow tool servo diamond turning toolpath planning method proposed in this paper can generate more uniform toolpaths on the freeform surfaces and keep the residual tool height within a small range.","PeriodicalId":48519,"journal":{"name":"Machines","volume":" 9","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Toolpath Planning Method for Optical Freeform Surface Ultra-Precision Turning Based on NURBS Surface Curvature\",\"authors\":\"Xuchu Wang, Qingshun Bai, Siyu Gao, Liang Zhao, Kai Cheng\",\"doi\":\"10.3390/machines11111017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the applications for freeform optical surfaces continue to grow, the need for high-precision machining methods is becoming more and more of a necessity. Different toolpath strategies for the ultra-high precision turning of freeform surfaces can have a significant impact on the quality of the machined surfaces. This paper presents a novel toolpath planning method for ultra-precision slow tool servo diamond turning based on the curvature of freeform surfaces. The method analyzes the differential geometric properties of freeform surfaces by reconstructing NURBS freeform surfaces. A mathematical model is constructed based on the parameters of different positions of the freeform surface, toolpath parameters, and tool residual height. Appropriate toolpath parameters can be calculated to generate the optical freeform ultra-precision slow tool servo diamond turning toolpath. Compared with the toolpaths generated by the traditional Archimedes spiral method, the ultra-precision slow tool servo diamond turning toolpath planning method proposed in this paper can generate more uniform toolpaths on the freeform surfaces and keep the residual tool height within a small range.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11111017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着自由曲面光学应用的不断增长,对高精度加工方法的需求也越来越迫切。自由曲面的超高精度车削加工中,不同的刀具路径策略对加工表面的质量有很大的影响。提出了一种基于自由曲面曲率的超精密慢速伺服金刚石车削刀具轨迹规划方法。该方法通过对NURBS自由曲面的重构,分析了自由曲面的微分几何特性。基于自由曲面不同位置参数、刀具路径参数和刀具残差高度,建立了数学模型。通过计算合适的刀路参数,生成光学自由曲面超精密慢刀伺服金刚石车削刀路。与传统的阿基米德螺旋法生成的刀具轨迹相比,本文提出的超精密慢刀伺服金刚石车削刀具轨迹规划方法可以在自由曲面上生成更加均匀的刀具轨迹,并将剩余刀具高度控制在较小的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Toolpath Planning Method for Optical Freeform Surface Ultra-Precision Turning Based on NURBS Surface Curvature
As the applications for freeform optical surfaces continue to grow, the need for high-precision machining methods is becoming more and more of a necessity. Different toolpath strategies for the ultra-high precision turning of freeform surfaces can have a significant impact on the quality of the machined surfaces. This paper presents a novel toolpath planning method for ultra-precision slow tool servo diamond turning based on the curvature of freeform surfaces. The method analyzes the differential geometric properties of freeform surfaces by reconstructing NURBS freeform surfaces. A mathematical model is constructed based on the parameters of different positions of the freeform surface, toolpath parameters, and tool residual height. Appropriate toolpath parameters can be calculated to generate the optical freeform ultra-precision slow tool servo diamond turning toolpath. Compared with the toolpaths generated by the traditional Archimedes spiral method, the ultra-precision slow tool servo diamond turning toolpath planning method proposed in this paper can generate more uniform toolpaths on the freeform surfaces and keep the residual tool height within a small range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信