2019冠状病毒病大流行期间的社会脆弱性和地方经济成果

IF 1.7 Q2 GEOGRAPHY
Jim Lee
{"title":"2019冠状病毒病大流行期间的社会脆弱性和地方经济成果","authors":"Jim Lee","doi":"10.1080/21681376.2023.2274097","DOIUrl":null,"url":null,"abstract":"This paper investigates factors associated with disparities in the exposure of US counties to the initial COVID-19 economic shock in early 2020 and their disparate economic recovery paths during the pandemic. We focus on three alternative composite measures of social vulnerability to disasters: the Centers for Disease Control and Prevention’s Social Vulnerability Index, the University of South Carolina’s Social Vulnerability Index and the Census Bureau’s Community Resilience Estimate. Empirical evidence under the conventional ‘global’ regression approach supports a cross-sectional correlation between the social vulnerability indices and local economic outcomes during the recovery phase, although the results are equivocal for characterising uneven local economic downturns triggered by the pandemic. Economic outcomes were dominated by other local characteristics, including population density, the share of hospitality employment, government policy measures and unobservable factors. In addition to validating the empirical relevance of the social vulnerability indices in the context of the COVID-19 pandemic, a geographically and temporally weighted autoregressive model offers insights into both disparate and clustering patterns across broad regions in the role of inherent sociodemographic attributes for characterising local economic dynamics over time.","PeriodicalId":46370,"journal":{"name":"Regional Studies Regional Science","volume":" 17","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social vulnerability and local economic outcomes during the COVID-19 pandemic\",\"authors\":\"Jim Lee\",\"doi\":\"10.1080/21681376.2023.2274097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates factors associated with disparities in the exposure of US counties to the initial COVID-19 economic shock in early 2020 and their disparate economic recovery paths during the pandemic. We focus on three alternative composite measures of social vulnerability to disasters: the Centers for Disease Control and Prevention’s Social Vulnerability Index, the University of South Carolina’s Social Vulnerability Index and the Census Bureau’s Community Resilience Estimate. Empirical evidence under the conventional ‘global’ regression approach supports a cross-sectional correlation between the social vulnerability indices and local economic outcomes during the recovery phase, although the results are equivocal for characterising uneven local economic downturns triggered by the pandemic. Economic outcomes were dominated by other local characteristics, including population density, the share of hospitality employment, government policy measures and unobservable factors. In addition to validating the empirical relevance of the social vulnerability indices in the context of the COVID-19 pandemic, a geographically and temporally weighted autoregressive model offers insights into both disparate and clustering patterns across broad regions in the role of inherent sociodemographic attributes for characterising local economic dynamics over time.\",\"PeriodicalId\":46370,\"journal\":{\"name\":\"Regional Studies Regional Science\",\"volume\":\" 17\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regional Studies Regional Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681376.2023.2274097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies Regional Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681376.2023.2274097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

本文调查了与美国各县在2020年初遭受COVID-19经济冲击的差异相关的因素,以及它们在大流行期间不同的经济复苏路径。我们将重点放在三种可选择的综合措施上:疾病控制和预防中心的社会脆弱性指数、南卡罗来纳大学的社会脆弱性指数和人口普查局的社区复原力估计。传统的“全球”回归方法下的经验证据支持社会脆弱性指数与恢复阶段的地方经济结果之间的横截面相关性,尽管结果在描述大流行引发的不平衡的地方经济衰退方面是模棱两可的。经济成果主要取决于其他地方特征,包括人口密度、酒店业就业比例、政府政策措施和不可观察的因素。除了在2019冠状病毒病大流行背景下验证社会脆弱性指数的经验相关性外,地理和时间加权自回归模型还提供了跨大区域的差异性和聚类模式的见解,揭示了固有社会人口属性在表征当地经济动态方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social vulnerability and local economic outcomes during the COVID-19 pandemic
This paper investigates factors associated with disparities in the exposure of US counties to the initial COVID-19 economic shock in early 2020 and their disparate economic recovery paths during the pandemic. We focus on three alternative composite measures of social vulnerability to disasters: the Centers for Disease Control and Prevention’s Social Vulnerability Index, the University of South Carolina’s Social Vulnerability Index and the Census Bureau’s Community Resilience Estimate. Empirical evidence under the conventional ‘global’ regression approach supports a cross-sectional correlation between the social vulnerability indices and local economic outcomes during the recovery phase, although the results are equivocal for characterising uneven local economic downturns triggered by the pandemic. Economic outcomes were dominated by other local characteristics, including population density, the share of hospitality employment, government policy measures and unobservable factors. In addition to validating the empirical relevance of the social vulnerability indices in the context of the COVID-19 pandemic, a geographically and temporally weighted autoregressive model offers insights into both disparate and clustering patterns across broad regions in the role of inherent sociodemographic attributes for characterising local economic dynamics over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
15.80%
发文量
49
审稿时长
18 weeks
期刊介绍: Regional Studies, Regional Science is an interdisciplinary open access journal from the Regional Studies Association, first published in 2014. We particularly welcome submissions from authors working on regional issues in geography, economics, planning, and political science. The journal features a streamlined peer-review process and quick turnaround times from submission to acceptance. Authors will normally receive a decision on their manuscript within 60 days of submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信