2023年2月6日大震源强震记录结合GNSS偏移的7.8级 rkiye地震运动学破裂模型揭示了间歇性超剪切破裂

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Bertrand Delouis, Martijn van den Ende, Jean-Paul Ampuero
{"title":"2023年2月6日大震源强震记录结合GNSS偏移的7.8级<s:1> rkiye地震运动学破裂模型揭示了间歇性超剪切破裂","authors":"Bertrand Delouis, Martijn van den Ende, Jean-Paul Ampuero","doi":"10.1785/0120230077","DOIUrl":null,"url":null,"abstract":"ABSTRACT The 2023 Mw 7.8 southeast Türkiye earthquake was recorded by an unprecedentedly large set of strong-motion stations very close to its rupture, opening the opportunity to observe the rupture process of a large earthquake with fine resolution. Here, the kinematics of the earthquake source are inferred by finite-source inversion based on strong-motion records and coseismic offsets from permanent Global Navigation Satellite Systems stations. The strong-motion records at stations NAR and 4615, which are the closest to the splay fault (SPF) where the rupture initiated and which were previously interpreted to contain the signature of supershear rupture speeds, are successfully modeled here by a subshear rupture propagating unilaterally to the northeast. Once the rupture on the SPF reaches the east Anatolian fault (EAF), it propagates on the EAF bilaterally, extending about 120 km northeast and 180 km southwest. To the south, the depth extent of the rupture decreases, as it passes a bend of the EAF. Although the rupture velocity remains globally subshear along the EAF, we identify three portions of the fault where the rupture is transiently supershear. The transitions to supershear speed coincide with regions of reduced fault slip, which suggests supershear bursts generated by the failure of local rupture barriers. Toward the southwest termination, the rupture encircles an asperity before its failure, which is a feature that has been observed only on rare occasions. This unprecedented detail of the inversion was facilitated by the proximity to the fault and the exceptional density of the accelerometric network in the area.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":" 5","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Rupture Model of the 6 February 2023 Mw 7.8 Türkiye Earthquake from a Large Set of Near-Source Strong-Motion Records Combined with GNSS Offsets Reveals Intermittent Supershear Rupture\",\"authors\":\"Bertrand Delouis, Martijn van den Ende, Jean-Paul Ampuero\",\"doi\":\"10.1785/0120230077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The 2023 Mw 7.8 southeast Türkiye earthquake was recorded by an unprecedentedly large set of strong-motion stations very close to its rupture, opening the opportunity to observe the rupture process of a large earthquake with fine resolution. Here, the kinematics of the earthquake source are inferred by finite-source inversion based on strong-motion records and coseismic offsets from permanent Global Navigation Satellite Systems stations. The strong-motion records at stations NAR and 4615, which are the closest to the splay fault (SPF) where the rupture initiated and which were previously interpreted to contain the signature of supershear rupture speeds, are successfully modeled here by a subshear rupture propagating unilaterally to the northeast. Once the rupture on the SPF reaches the east Anatolian fault (EAF), it propagates on the EAF bilaterally, extending about 120 km northeast and 180 km southwest. To the south, the depth extent of the rupture decreases, as it passes a bend of the EAF. Although the rupture velocity remains globally subshear along the EAF, we identify three portions of the fault where the rupture is transiently supershear. The transitions to supershear speed coincide with regions of reduced fault slip, which suggests supershear bursts generated by the failure of local rupture barriers. Toward the southwest termination, the rupture encircles an asperity before its failure, which is a feature that has been observed only on rare occasions. This unprecedented detail of the inversion was facilitated by the proximity to the fault and the exceptional density of the accelerometric network in the area.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230077\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230077","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

2023 Mw 7.8级东南震源基耶耶大地震是史无前例的大型强震台站在离震源破裂非常近的地方记录下来的,这为以精细分辨率观测大地震的破裂过程提供了机会。在这里,震源的运动学是通过基于强震记录和永久全球导航卫星系统站的同震偏移量的有限源反演来推断的。NAR和4615站的强震记录最接近破裂发生的张开断层(SPF),以前被解释为包含超剪切破裂速度的特征,在这里成功地通过向东北单方面传播的亚剪切破裂来模拟。一旦SPF上的破裂到达东安纳托利亚断层(EAF),它就会在EAF上双向传播,向东北延伸约120公里,向西南延伸约180公里。在南部,破裂的深度范围减小,因为它通过一个EAF的弯曲。虽然沿东断裂带的破裂速度总体上保持亚剪切,但我们确定了断层的三个部分,其中破裂是短暂的超剪切。向超剪切速度的转变与断层滑动减少的区域一致,这表明局部破裂屏障的破坏产生了超剪切爆发。在西南端,破裂在破裂之前环绕着一个粗糙体,这是一个很少被观察到的特征。这一前所未有的反演细节得益于断层附近和该地区加速度测量网络的异常密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Rupture Model of the 6 February 2023 Mw 7.8 Türkiye Earthquake from a Large Set of Near-Source Strong-Motion Records Combined with GNSS Offsets Reveals Intermittent Supershear Rupture
ABSTRACT The 2023 Mw 7.8 southeast Türkiye earthquake was recorded by an unprecedentedly large set of strong-motion stations very close to its rupture, opening the opportunity to observe the rupture process of a large earthquake with fine resolution. Here, the kinematics of the earthquake source are inferred by finite-source inversion based on strong-motion records and coseismic offsets from permanent Global Navigation Satellite Systems stations. The strong-motion records at stations NAR and 4615, which are the closest to the splay fault (SPF) where the rupture initiated and which were previously interpreted to contain the signature of supershear rupture speeds, are successfully modeled here by a subshear rupture propagating unilaterally to the northeast. Once the rupture on the SPF reaches the east Anatolian fault (EAF), it propagates on the EAF bilaterally, extending about 120 km northeast and 180 km southwest. To the south, the depth extent of the rupture decreases, as it passes a bend of the EAF. Although the rupture velocity remains globally subshear along the EAF, we identify three portions of the fault where the rupture is transiently supershear. The transitions to supershear speed coincide with regions of reduced fault slip, which suggests supershear bursts generated by the failure of local rupture barriers. Toward the southwest termination, the rupture encircles an asperity before its failure, which is a feature that has been observed only on rare occasions. This unprecedented detail of the inversion was facilitated by the proximity to the fault and the exceptional density of the accelerometric network in the area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Seismological Society of America
Bulletin of the Seismological Society of America 地学-地球化学与地球物理
CiteScore
5.80
自引率
13.30%
发文量
140
审稿时长
3 months
期刊介绍: The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信