詹尼斯-卡明斯二聚体的非平衡动力学

G. Vivek, Debabrata Mondal, S. Sinha
{"title":"詹尼斯-卡明斯二聚体的非平衡动力学","authors":"G. Vivek, Debabrata Mondal, S. Sinha","doi":"10.1103/physreve.108.054116","DOIUrl":null,"url":null,"abstract":"We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping phenomenon, which results in photon population imbalance between the two cavities. We also study the dynamics quantum mechanically to identify characteristic features of different steady states and to explore fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entanglement of spin qubits. For a particular ``self-trapped'' state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments, which can have applications in quantum information processing and quantum technologies.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonequilibrium dynamics of the Jaynes-Cummings dimer\",\"authors\":\"G. Vivek, Debabrata Mondal, S. Sinha\",\"doi\":\"10.1103/physreve.108.054116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping phenomenon, which results in photon population imbalance between the two cavities. We also study the dynamics quantum mechanically to identify characteristic features of different steady states and to explore fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entanglement of spin qubits. For a particular ``self-trapped'' state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments, which can have applications in quantum information processing and quantum technologies.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.108.054116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了存在Kerr非线性的Josephson-coupled jayes - cummings二聚体的非平衡动力学,这种非线性可以在腔和电路量子电动力学系统中实现。系统地分析了半经典动力学,给出了各种光子约瑟夫森振荡及其稳定状态。不同类型的动态跃迁会导致自捕获现象,从而导致两个腔之间的光子居数不平衡。我们还研究了动态量子力学,以识别不同稳态的特征,并探索令人着迷的量子效应,如自旋失相,相位波动,光子场的复兴现象,以及自旋量子比特的纠缠。对于特定的“自困”态,原子量子比特之间的互信息与光子种群不平衡直接相关,这有望在两个非相互作用的量子比特之间以受控的方式产生光子介导的纠缠。在从稳定状态突然猝灭到不稳定状态下,光子分布表现为相空间混合,相干性迅速丧失,类似于热态。最后,我们讨论了实验中新结果的相关性,这些结果可以在量子信息处理和量子技术中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonequilibrium dynamics of the Jaynes-Cummings dimer
We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping phenomenon, which results in photon population imbalance between the two cavities. We also study the dynamics quantum mechanically to identify characteristic features of different steady states and to explore fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entanglement of spin qubits. For a particular ``self-trapped'' state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments, which can have applications in quantum information processing and quantum technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信