{"title":"在紫外可见光谱中利用脉冲光激发进行空间分辨自旋控制的核电共振","authors":"Johannes K. Krondorfer, Andreas W. Hauser","doi":"10.1103/physreva.108.053110","DOIUrl":null,"url":null,"abstract":"Nuclear electric resonance (NER) spectroscopy is currently experiencing a revival as a tool for nuclear spin-based quantum computing. Compared to magnetic or electric fields, local electron density fluctuations caused by changes in the atomic environment provide a much higher spatial resolution for the addressing of nuclear spins in qubit registers or within a single molecule. In this article we investigate the possibility of coherent spin control in atoms or molecules via nuclear quadrupole resonance from first principles. An abstract, time-dependent description is provided which entails and reflects on commonly applied approximations. This formalism is then used to propose a method we refer to as ``optical'' nuclear electric resonance (ONER). It employs pulsed optical excitations in the UV-visible light spectrum to modulate the electric field gradient at the position of a specific nucleus of interest by periodic changes of the surrounding electron density. Possible realizations and limitations of ONER for atomically resolved spin manipulation are discussed and tested on $^{9}\\mathrm{Be}$ as an atomic benchmark system via electronic structure theory.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":" 28","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear electric resonance for spatially resolved spin control via pulsed optical excitation in the UV-visible spectrum\",\"authors\":\"Johannes K. Krondorfer, Andreas W. Hauser\",\"doi\":\"10.1103/physreva.108.053110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear electric resonance (NER) spectroscopy is currently experiencing a revival as a tool for nuclear spin-based quantum computing. Compared to magnetic or electric fields, local electron density fluctuations caused by changes in the atomic environment provide a much higher spatial resolution for the addressing of nuclear spins in qubit registers or within a single molecule. In this article we investigate the possibility of coherent spin control in atoms or molecules via nuclear quadrupole resonance from first principles. An abstract, time-dependent description is provided which entails and reflects on commonly applied approximations. This formalism is then used to propose a method we refer to as ``optical'' nuclear electric resonance (ONER). It employs pulsed optical excitations in the UV-visible light spectrum to modulate the electric field gradient at the position of a specific nucleus of interest by periodic changes of the surrounding electron density. Possible realizations and limitations of ONER for atomically resolved spin manipulation are discussed and tested on $^{9}\\\\mathrm{Be}$ as an atomic benchmark system via electronic structure theory.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":\" 28\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.108.053110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.053110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuclear electric resonance for spatially resolved spin control via pulsed optical excitation in the UV-visible spectrum
Nuclear electric resonance (NER) spectroscopy is currently experiencing a revival as a tool for nuclear spin-based quantum computing. Compared to magnetic or electric fields, local electron density fluctuations caused by changes in the atomic environment provide a much higher spatial resolution for the addressing of nuclear spins in qubit registers or within a single molecule. In this article we investigate the possibility of coherent spin control in atoms or molecules via nuclear quadrupole resonance from first principles. An abstract, time-dependent description is provided which entails and reflects on commonly applied approximations. This formalism is then used to propose a method we refer to as ``optical'' nuclear electric resonance (ONER). It employs pulsed optical excitations in the UV-visible light spectrum to modulate the electric field gradient at the position of a specific nucleus of interest by periodic changes of the surrounding electron density. Possible realizations and limitations of ONER for atomically resolved spin manipulation are discussed and tested on $^{9}\mathrm{Be}$ as an atomic benchmark system via electronic structure theory.