热带植物对和Noether-Lefschetz位点的变形

IF 0.5 Q3 MATHEMATICS
Ugo Bruzzo, William D. Montoya
{"title":"热带植物对和Noether-Lefschetz位点的变形","authors":"Ugo Bruzzo, William D. Montoya","doi":"10.1007/s40879-023-00702-4","DOIUrl":null,"url":null,"abstract":"Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\\mathbb {P}_{\\Sigma }^{2k+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mi>Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , with $$V\\subset X$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\\lambda _V\\in H^{k,k}(X)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).","PeriodicalId":44725,"journal":{"name":"European Journal of Mathematics","volume":" 6","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation of pairs and Noether–Lefschetz loci in toric varieties\",\"authors\":\"Ugo Bruzzo, William D. Montoya\",\"doi\":\"10.1007/s40879-023-00702-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\\\\mathbb {P}_{\\\\Sigma }^{2k+1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mi>Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , with $$V\\\\subset X$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\\\\lambda _V\\\\in H^{k,k}(X)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).\",\"PeriodicalId\":44725,\"journal\":{\"name\":\"European Journal of Mathematics\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40879-023-00702-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40879-023-00702-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们继续研究环形簇中的Noether-Lefschetz轨迹,并研究(V, X)对的变形,其中V是一个完全交子簇,X是一个简单投影环形簇$$\mathbb {P}_{\Sigma }^{2k+1}$$ P Σ 2k + 1中的拟光滑超曲面,$$V\subset X$$ V∧X。假设超曲面X是Macaulay型,这意味着它的环雅可比理想是Cox-Gorenstein,这一性质推广了标准多项式环中Gorenstein理想的概念。在某些假设下,我们证明了类$$\lambda _V\in H^{k,k}(X)$$ λ V∈H k, k (X)当且仅当它保持类型(k, k)时变形为代数类。实际上,我们证明了局部Noether-Lefschetz轨迹是一个合适的Hilbert格式的不可约分量。这推广了我们之前工作中的定理4.2 (Bruzzo和Montoya 15(2): 682-694, 2021)和Dan(在:解析和代数几何中)证明的主要定理。印度斯坦书局,新德里,第107-115页,2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation of pairs and Noether–Lefschetz loci in toric varieties
Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\mathbb {P}_{\Sigma }^{2k+1}$$ P Σ 2 k + 1 , with $$V\subset X$$ V X . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\lambda _V\in H^{k,k}(X)$$ λ V H k , k ( X ) deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
78
期刊介绍: The European Journal of Mathematics (EJM) is an international journal that publishes research papers in all fields of mathematics. It also publishes research-survey papers intended to provide nonspecialists with insight into topics of current research in different areas of mathematics. The journal invites authors from all over the world. All contributions are required to meet high standards of quality and originality. EJM has an international editorial board. Coverage in EJM will include: - Algebra - Complex Analysis - Differential Equations - Discrete Mathematics - Functional Analysis - Geometry and Topology - Mathematical Logic and Foundations - Number Theory - Numerical Analysis and Optimization - Probability and Statistics - Real Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信