{"title":"热带植物对和Noether-Lefschetz位点的变形","authors":"Ugo Bruzzo, William D. Montoya","doi":"10.1007/s40879-023-00702-4","DOIUrl":null,"url":null,"abstract":"Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\\mathbb {P}_{\\Sigma }^{2k+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mi>Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , with $$V\\subset X$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\\lambda _V\\in H^{k,k}(X)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).","PeriodicalId":44725,"journal":{"name":"European Journal of Mathematics","volume":" 6","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation of pairs and Noether–Lefschetz loci in toric varieties\",\"authors\":\"Ugo Bruzzo, William D. Montoya\",\"doi\":\"10.1007/s40879-023-00702-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\\\\mathbb {P}_{\\\\Sigma }^{2k+1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mi>Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , with $$V\\\\subset X$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo>⊂</mml:mo> <mml:mi>X</mml:mi> </mml:mrow> </mml:math> . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\\\\lambda _V\\\\in H^{k,k}(X)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mi>V</mml:mi> </mml:msub> <mml:mo>∈</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).\",\"PeriodicalId\":44725,\"journal\":{\"name\":\"European Journal of Mathematics\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40879-023-00702-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40879-023-00702-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Deformation of pairs and Noether–Lefschetz loci in toric varieties
Abstract We continue our study of the Noether–Lefschetz loci in toric varieties and investigate deformation of pairs ( V , X ) where V is a complete intersection subvariety and X a quasi-smooth hypersurface in a simplicial projective toric variety $$\mathbb {P}_{\Sigma }^{2k+1}$$ PΣ2k+1 , with $$V\subset X$$ V⊂X . The hypersurface X is supposed to be of Macaulay type , which means that its toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein ideal in the standard polynomial ring. Under some assumptions, we prove that the class $$\lambda _V\in H^{k,k}(X)$$ λV∈Hk,k(X) deforms to an algebraic class if and only if it remains of type ( k , k ). Actually we prove that locally the Noether–Lefschetz locus is an irreducible component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp 107–115, 2017).
期刊介绍:
The European Journal of Mathematics (EJM) is an international journal that publishes research papers in all fields of mathematics. It also publishes research-survey papers intended to provide nonspecialists with insight into topics of current research in different areas of mathematics. The journal invites authors from all over the world. All contributions are required to meet high standards of quality and originality. EJM has an international editorial board. Coverage in EJM will include: - Algebra - Complex Analysis - Differential Equations - Discrete Mathematics - Functional Analysis - Geometry and Topology - Mathematical Logic and Foundations - Number Theory - Numerical Analysis and Optimization - Probability and Statistics - Real Analysis.