摄动Gerdjikov-Ivanov方程的动力学行为

IF 1 4区 数学 Q1 MATHEMATICS
Hamood Ur Rehman, Ifrah Iqbal, M. Mirzazadeh, Salma Haque, Nabil Mlaiki, Wasfi Shatanawi
{"title":"摄动Gerdjikov-Ivanov方程的动力学行为","authors":"Hamood Ur Rehman, Ifrah Iqbal, M. Mirzazadeh, Salma Haque, Nabil Mlaiki, Wasfi Shatanawi","doi":"10.1186/s13661-023-01792-5","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this work is to investigate the perturbed Gerdjikov–Ivanov (GI) equation along spatio-temporal dispersion which explains the dynamics of soliton dispersion and evolution of propagation distance in optical fibers, photonic crystal fibers (PCF), and metamaterials. The algorithms, namely hyperbolic extended function method and generalized Kudryashov’s method, are constructed to obtain the new soliton solutions. The dark, bright, periodic, and singular solitons are derived of the considered equation with the appropriate choice of parameters. These results are novel, confirm the stability of optical solitons, and have not been studied earlier. The explanation of evaluated results is given by sketching the various graphs in 3D, contour and 2D plots by using Maple 18. Graphical simulations divulge that varying the wave velocity affects the dynamical behaviors of the model. In summary, this research adds to our knowledge on how the perturbed GI equation with spatio-temporal dispersion behaves. The obtained soliton solutions and the methods offer computational tools for further analysis in this field. This work represents an advancement in our understanding of soliton dynamics and their applications in photonic systems.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":" 22","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical behavior of perturbed Gerdjikov–Ivanov equation through different techniques\",\"authors\":\"Hamood Ur Rehman, Ifrah Iqbal, M. Mirzazadeh, Salma Haque, Nabil Mlaiki, Wasfi Shatanawi\",\"doi\":\"10.1186/s13661-023-01792-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this work is to investigate the perturbed Gerdjikov–Ivanov (GI) equation along spatio-temporal dispersion which explains the dynamics of soliton dispersion and evolution of propagation distance in optical fibers, photonic crystal fibers (PCF), and metamaterials. The algorithms, namely hyperbolic extended function method and generalized Kudryashov’s method, are constructed to obtain the new soliton solutions. The dark, bright, periodic, and singular solitons are derived of the considered equation with the appropriate choice of parameters. These results are novel, confirm the stability of optical solitons, and have not been studied earlier. The explanation of evaluated results is given by sketching the various graphs in 3D, contour and 2D plots by using Maple 18. Graphical simulations divulge that varying the wave velocity affects the dynamical behaviors of the model. In summary, this research adds to our knowledge on how the perturbed GI equation with spatio-temporal dispersion behaves. The obtained soliton solutions and the methods offer computational tools for further analysis in this field. This work represents an advancement in our understanding of soliton dynamics and their applications in photonic systems.\",\"PeriodicalId\":55333,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\" 22\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01792-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01792-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了沿时空色散的扰动Gerdjikov-Ivanov (GI)方程,该方程解释了光纤、光子晶体光纤(PCF)和超材料中孤子色散的动力学和传播距离的演化。构造了双曲扩展函数法和广义Kudryashov法来获得新的孤子解。暗孤子、亮孤子、周期孤子和奇异孤子通过适当的参数选择推导出来。这些结果是新颖的,证实了光孤子的稳定性,并且以前没有研究过。利用Maple 18绘制了三维、等高线和二维图形,对评价结果进行了说明。图形模拟表明,改变波速会影响模型的动力学行为。总之,这项研究增加了我们对扰动GI方程的时空色散行为的认识。所得的孤子解和方法为该领域的进一步分析提供了计算工具。这项工作代表了我们对孤子动力学及其在光子系统中的应用的理解的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical behavior of perturbed Gerdjikov–Ivanov equation through different techniques
Abstract The objective of this work is to investigate the perturbed Gerdjikov–Ivanov (GI) equation along spatio-temporal dispersion which explains the dynamics of soliton dispersion and evolution of propagation distance in optical fibers, photonic crystal fibers (PCF), and metamaterials. The algorithms, namely hyperbolic extended function method and generalized Kudryashov’s method, are constructed to obtain the new soliton solutions. The dark, bright, periodic, and singular solitons are derived of the considered equation with the appropriate choice of parameters. These results are novel, confirm the stability of optical solitons, and have not been studied earlier. The explanation of evaluated results is given by sketching the various graphs in 3D, contour and 2D plots by using Maple 18. Graphical simulations divulge that varying the wave velocity affects the dynamical behaviors of the model. In summary, this research adds to our knowledge on how the perturbed GI equation with spatio-temporal dispersion behaves. The obtained soliton solutions and the methods offer computational tools for further analysis in this field. This work represents an advancement in our understanding of soliton dynamics and their applications in photonic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信