{"title":"加速薄弹性圆盘剪切引起的起皱","authors":"Ciprian D. Coman","doi":"10.1007/s00033-023-02131-5","DOIUrl":null,"url":null,"abstract":"Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-induced wrinkling in accelerating thin elastic discs\",\"authors\":\"Ciprian D. Coman\",\"doi\":\"10.1007/s00033-023-02131-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02131-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02131-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Shear-induced wrinkling in accelerating thin elastic discs
Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.