{"title":"加速薄弹性圆盘剪切引起的起皱","authors":"Ciprian D. Coman","doi":"10.1007/s00033-023-02131-5","DOIUrl":null,"url":null,"abstract":"Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":" 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-induced wrinkling in accelerating thin elastic discs\",\"authors\":\"Ciprian D. Coman\",\"doi\":\"10.1007/s00033-023-02131-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.\",\"PeriodicalId\":54401,\"journal\":{\"name\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02131-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02131-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Shear-induced wrinkling in accelerating thin elastic discs
Abstract The wrinkling instabilities produced by in-plane angular accelerations in a rotating disc are discussed here in a particular limit of relevance to very thin plates. By coupling the classical linear elasticity solution for this configuration with the Föppl–von Kármán plate buckling equation, a fourth-order boundary-value problem with variable coefficients is obtained. The singular-perturbation character of the resulting problem arises from a combination of factors encompassing both the pre-stress (due to the spinning motion) and the geometry of the annular domain. With the help of a simplified multiple-scale perturbation method in conjunction with matched asymptotics, we succeed in capturing the dependence of the critical (wrinkling) acceleration on the instantaneous speed of the disc as well as other physical parameters. We show that the asymptotic predictions compare well with the results of direct numerical simulations of the original bifurcation problem. The limitations of the formulae obtained are also considered, and some practical suggestions for improving their accuracy are suggested.
期刊介绍:
The Journal of Applied Mathematics and Physics (ZAMP) publishes papers of high scientific quality in Fluid Mechanics, Mechanics of Solids and Differential Equations/Applied Mathematics. A paper will be considered for publication if at least one of the following conditions is fulfilled:
The paper includes results or discussions which can be considered original and highly interesting.
The paper presents a new method.
The author reviews a problem or a class of problems with such profound insight that further research is encouraged.
The readers of ZAMP will find not only articles in their own special field but also original work in neighbouring domains. This will lead to an exchange of ideas; concepts and methods which have proven to be successful in one field may well be useful to other areas. ZAMP attempts to publish articles reasonably quickly. Longer papers are published in the section "Original Papers", shorter ones may appear under "Brief Reports" where publication is particularly rapid. The journal includes a "Book Review" section and provides information on activities (such as upcoming symposia, meetings or special courses) which are of interest to its readers.