None Anu, None Alokika, R. C. Kuhad, Alexander Rapoport, Vinod Kumar, Davender Singh, Vijay Kumar, Santosh Kumar Tiwari, Shruti Ahlawat, Bijender Singh
{"title":"木质纤维素生物质的生物预处理:将固体废物转化为增值产品的一种环境友好和可持续的方法","authors":"None Anu, None Alokika, R. C. Kuhad, Alexander Rapoport, Vinod Kumar, Davender Singh, Vijay Kumar, Santosh Kumar Tiwari, Shruti Ahlawat, Bijender Singh","doi":"10.1080/10643389.2023.2277670","DOIUrl":null,"url":null,"abstract":"AbstractAgricultural residue is produced in large quantities during crop harvesting, and open burning of this waste causes environmental pollution and health risks. Due to the structural complexity of the lignocellulose and problems associated with physical and chemical methods of its pretreatments, there is an utmost need for an eco-friendly pretreatment strategy. Biological pretreatment involving microorganisms and their enzymes is an environment-benign and economic process due to lack of release or requirement of toxic chemicals during the process. Among microorganisms, filamentous fungi (mainly Basidiomycetes) with efficient enzymatic machinery have been used in efficient delignification and bioconversion of lignocellulosic biomass. Enzyme-mediated pretreatment has further improved the saccharification of plant biomass with no sugar loss as in case of microbial pretreatment. Composting, ensiling, solid state fermentation, and biogas production are based on biological pretreatment, which are used for the generation of value-added products. Biological pretreatment does not require/release toxic chemicals but, is highly useful in detoxification of such toxic compounds. Biological pretreatment is significantly affected by biotic and abiotic factors. Pretreated biomass is hydrolyzed by cellulases and xylanases into sugars that are fermented into biofuels, organic acids, enzymes, and other products. The slow and long incubation nature of biological pretreatment has been overcome by combining with milder physico-chemical methods. Furthermore, the consolidated bioprocessing-based biorefinery approach has enhanced the potential of biological pretreatment by involving microbial consortium for the production of biofuels and other value-added products in a single step. Therefore, biological pretreatment-based biorefinery approach would be quite beneficial for the large-scale production of value-added products from lignocellulose with concomitant reduction in environmental pollution and solid waste management.Keywords: Bioconversionbiological pretreatmentbiorefineryconsolidated bioprocessing renewable biofuelslignocellulosic biomassHandling Editors: Vijai Kumar Gupta and Lena Q. Ma Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data related to this review article is based on the information collected from research work carried out in the field.Additional informationFundingAlokika is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance (No. 09/382(0179)/2016-EMR-I) during writing this review. BS and Anu are thankful to the Haryana State Council for Science and Technology, Panchkula for providing financial support in the form of a research grant (No. HSCST/R&D/2017/62) and fellowship (No. 1743, dated April 12, 2017), respectively during the writing of this review.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":" 7","pages":"0"},"PeriodicalIF":11.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological pretreatment of lignocellulosic biomass: An environment-benign and sustainable approach for conversion of solid waste into value-added products\",\"authors\":\"None Anu, None Alokika, R. C. Kuhad, Alexander Rapoport, Vinod Kumar, Davender Singh, Vijay Kumar, Santosh Kumar Tiwari, Shruti Ahlawat, Bijender Singh\",\"doi\":\"10.1080/10643389.2023.2277670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractAgricultural residue is produced in large quantities during crop harvesting, and open burning of this waste causes environmental pollution and health risks. Due to the structural complexity of the lignocellulose and problems associated with physical and chemical methods of its pretreatments, there is an utmost need for an eco-friendly pretreatment strategy. Biological pretreatment involving microorganisms and their enzymes is an environment-benign and economic process due to lack of release or requirement of toxic chemicals during the process. Among microorganisms, filamentous fungi (mainly Basidiomycetes) with efficient enzymatic machinery have been used in efficient delignification and bioconversion of lignocellulosic biomass. Enzyme-mediated pretreatment has further improved the saccharification of plant biomass with no sugar loss as in case of microbial pretreatment. Composting, ensiling, solid state fermentation, and biogas production are based on biological pretreatment, which are used for the generation of value-added products. Biological pretreatment does not require/release toxic chemicals but, is highly useful in detoxification of such toxic compounds. Biological pretreatment is significantly affected by biotic and abiotic factors. Pretreated biomass is hydrolyzed by cellulases and xylanases into sugars that are fermented into biofuels, organic acids, enzymes, and other products. The slow and long incubation nature of biological pretreatment has been overcome by combining with milder physico-chemical methods. Furthermore, the consolidated bioprocessing-based biorefinery approach has enhanced the potential of biological pretreatment by involving microbial consortium for the production of biofuels and other value-added products in a single step. Therefore, biological pretreatment-based biorefinery approach would be quite beneficial for the large-scale production of value-added products from lignocellulose with concomitant reduction in environmental pollution and solid waste management.Keywords: Bioconversionbiological pretreatmentbiorefineryconsolidated bioprocessing renewable biofuelslignocellulosic biomassHandling Editors: Vijai Kumar Gupta and Lena Q. Ma Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data related to this review article is based on the information collected from research work carried out in the field.Additional informationFundingAlokika is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance (No. 09/382(0179)/2016-EMR-I) during writing this review. BS and Anu are thankful to the Haryana State Council for Science and Technology, Panchkula for providing financial support in the form of a research grant (No. HSCST/R&D/2017/62) and fellowship (No. 1743, dated April 12, 2017), respectively during the writing of this review.\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\" 7\",\"pages\":\"0\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2023.2277670\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2277670","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biological pretreatment of lignocellulosic biomass: An environment-benign and sustainable approach for conversion of solid waste into value-added products
AbstractAgricultural residue is produced in large quantities during crop harvesting, and open burning of this waste causes environmental pollution and health risks. Due to the structural complexity of the lignocellulose and problems associated with physical and chemical methods of its pretreatments, there is an utmost need for an eco-friendly pretreatment strategy. Biological pretreatment involving microorganisms and their enzymes is an environment-benign and economic process due to lack of release or requirement of toxic chemicals during the process. Among microorganisms, filamentous fungi (mainly Basidiomycetes) with efficient enzymatic machinery have been used in efficient delignification and bioconversion of lignocellulosic biomass. Enzyme-mediated pretreatment has further improved the saccharification of plant biomass with no sugar loss as in case of microbial pretreatment. Composting, ensiling, solid state fermentation, and biogas production are based on biological pretreatment, which are used for the generation of value-added products. Biological pretreatment does not require/release toxic chemicals but, is highly useful in detoxification of such toxic compounds. Biological pretreatment is significantly affected by biotic and abiotic factors. Pretreated biomass is hydrolyzed by cellulases and xylanases into sugars that are fermented into biofuels, organic acids, enzymes, and other products. The slow and long incubation nature of biological pretreatment has been overcome by combining with milder physico-chemical methods. Furthermore, the consolidated bioprocessing-based biorefinery approach has enhanced the potential of biological pretreatment by involving microbial consortium for the production of biofuels and other value-added products in a single step. Therefore, biological pretreatment-based biorefinery approach would be quite beneficial for the large-scale production of value-added products from lignocellulose with concomitant reduction in environmental pollution and solid waste management.Keywords: Bioconversionbiological pretreatmentbiorefineryconsolidated bioprocessing renewable biofuelslignocellulosic biomassHandling Editors: Vijai Kumar Gupta and Lena Q. Ma Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data related to this review article is based on the information collected from research work carried out in the field.Additional informationFundingAlokika is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance (No. 09/382(0179)/2016-EMR-I) during writing this review. BS and Anu are thankful to the Haryana State Council for Science and Technology, Panchkula for providing financial support in the form of a research grant (No. HSCST/R&D/2017/62) and fellowship (No. 1743, dated April 12, 2017), respectively during the writing of this review.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.