节点保界有限元方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Gabriel R Barrenechea, Emmanuil H Georgoulis, Tristan Pryer, Andreas Veeser
{"title":"节点保界有限元方法","authors":"Gabriel R Barrenechea, Emmanuil H Georgoulis, Tristan Pryer, Andreas Veeser","doi":"10.1093/imanum/drad055","DOIUrl":null,"url":null,"abstract":"Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nodally bound-preserving finite element method\",\"authors\":\"Gabriel R Barrenechea, Emmanuil H Georgoulis, Tristan Pryer, Andreas Veeser\",\"doi\":\"10.1093/imanum/drad055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad055\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种非线性有限元方法,其节点值保持精确解的已知界。离散问题涉及一个非线性投影算子将任意节点值映射为保界节点值,并在该投影范围内寻求数值解。由于投影不是内射,为了恢复适位性,在互补投影的基础上增加了一个稳定化。在椭圆问题的框架内,离散问题可以看作是一个离散障碍问题的重新表述,通过Lipschitz投影纳入不等式约束。对线性和非线性反应扩散问题给出了该方法的推导。在合适的规范下建立了近似的最佳近似结果。特别地,我们证明了在线性情况下,数值解是所有节点保界有限元函数在能量范数上的最佳逼近。对这类问题的一系列数值实验表明了所提出的保界有限元方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nodally bound-preserving finite element method
Abstract This work proposes a nonlinear finite element method whose nodal values preserve bounds known for the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the projection is not injective, a stabilisation based upon the complementary projection is added in order to restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-diffusion problems. Near-best approximation results in suitable norms are established. In particular, we prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all nodally bound-preserving finite element functions. A series of numerical experiments for such problems showcase the good behaviour of the proposed bound-preserving finite element method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信