广义部分线性单指标模型的R包

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R Journal Pub Date : 2023-08-26 DOI:10.32614/rj-2023-024
Tianhai Zu, Yan Yu
{"title":"广义部分线性单指标模型的R包","authors":"Tianhai Zu, Yan Yu","doi":"10.32614/rj-2023-024","DOIUrl":null,"url":null,"abstract":"Generalized partially linear single-index models (GPLSIMs) are important tools in nonparametric regression. They extend popular generalized linear models to allow flexible nonlinear dependence on some predictors while overcoming the \"curse of dimensionality.\" We develop an R package gplsim that implements efficient spline estimation of GPLSIMs, proposed by [@yu_penalized_2002] and [@yu_penalised_2017], for a response variable from a general exponential family. The package builds upon the popular mgcv package for generalized additive models (GAMs) and provides functions that allow users to fit GPLSIMs with various link functions, select smoothing tuning parameter $\\lambda$ against generalized cross-validation or alternative choices, and visualize the estimated unknown univariate function of single-index term. In this paper, we discuss the implementation of gplsim in detail, and illustrate the use case through a sine-bump simulation study with various links and a real-data application to air pollution data.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"6 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gplsim: An R Package for Generalized Partially Linear Single-index Models\",\"authors\":\"Tianhai Zu, Yan Yu\",\"doi\":\"10.32614/rj-2023-024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized partially linear single-index models (GPLSIMs) are important tools in nonparametric regression. They extend popular generalized linear models to allow flexible nonlinear dependence on some predictors while overcoming the \\\"curse of dimensionality.\\\" We develop an R package gplsim that implements efficient spline estimation of GPLSIMs, proposed by [@yu_penalized_2002] and [@yu_penalised_2017], for a response variable from a general exponential family. The package builds upon the popular mgcv package for generalized additive models (GAMs) and provides functions that allow users to fit GPLSIMs with various link functions, select smoothing tuning parameter $\\\\lambda$ against generalized cross-validation or alternative choices, and visualize the estimated unknown univariate function of single-index term. In this paper, we discuss the implementation of gplsim in detail, and illustrate the use case through a sine-bump simulation study with various links and a real-data application to air pollution data.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-024\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

广义部分线性单指标模型(GPLSIMs)是研究非参数回归的重要工具。它们扩展了流行的广义线性模型,在克服“维数诅咒”的同时,允许对某些预测因子的灵活的非线性依赖。我们开发了一个R包gplsim,实现了由[@yu_penalized_2002]和[@yu_penalised_2017]提出的gplsim的有效样条估计,用于一般指数族的响应变量。该包建立在流行的mgcv包的基础上,用于广义加性模型(GAMs),并提供功能,允许用户拟合GPLSIMs与各种链接函数,选择平滑调谐参数$\lambda$针对广义交叉验证或替代选择,并可视化估计未知单变量函数的单指标项。在本文中,我们详细讨论了gplsim的实现,并通过各种链接的正弦碰撞模拟研究和空气污染数据的实际数据应用来说明用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
gplsim: An R Package for Generalized Partially Linear Single-index Models
Generalized partially linear single-index models (GPLSIMs) are important tools in nonparametric regression. They extend popular generalized linear models to allow flexible nonlinear dependence on some predictors while overcoming the "curse of dimensionality." We develop an R package gplsim that implements efficient spline estimation of GPLSIMs, proposed by [@yu_penalized_2002] and [@yu_penalised_2017], for a response variable from a general exponential family. The package builds upon the popular mgcv package for generalized additive models (GAMs) and provides functions that allow users to fit GPLSIMs with various link functions, select smoothing tuning parameter $\lambda$ against generalized cross-validation or alternative choices, and visualize the estimated unknown univariate function of single-index term. In this paper, we discuss the implementation of gplsim in detail, and illustrate the use case through a sine-bump simulation study with various links and a real-data application to air pollution data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信