{"title":"和标记的空间复杂度","authors":"Henning Fernau, Kshitij Gajjar","doi":"10.1007/s00224-023-10130-2","DOIUrl":null,"url":null,"abstract":"Abstract A graph is called a sum graph if its vertices can be labelled by distinct positive integers such that there is an edge between two vertices if and only if the sum of their labels is the label of another vertex of the graph. Most papers on sum graphs consider combinatorial questions like the minimum number of isolated vertices that need to be added to a given graph to make it a sum graph. In this paper, we initiate the study of sum graphs from the viewpoint of computational complexity. Notice that every n -vertex sum graph can be represented by a sorted list of n positive integers where edge queries can be answered in $$\\mathscr {O}(\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time. Therefore, upper-bounding the numbers used as vertex labels also upper-bounds the space complexity of storing the graph in the database. We show that every n -vertex, m -edge, d -degenerate graph can be made a sum graph by adding at most m isolated vertices to it, such that the largest numbers used as vertex labels grows as $$\\mathscr {O}(n^2d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This enables us to store the graph using $$\\mathscr {O}(m\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of memory. For sparse graphs (graphs with $$\\mathscr {O}(n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges), this matches the trivial lower bound of $$\\Omega (n\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . As planar graphs and forests have constant degeneracy, our result implies an upper bound of $$\\mathscr {O}(n^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> on their label numbers. The previously best known upper bound on the numbers needed for labelling general graphs with the minimum number of isolated vertices was $$\\mathscr {O}(4^n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mn>4</mml:mn> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , due to Kratochvíl, Miller & Nguyen (2001). Furthermore, their proof was existential, whereas our labelling can be constructed in polynomial time.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Space Complexity of Sum Labelling\",\"authors\":\"Henning Fernau, Kshitij Gajjar\",\"doi\":\"10.1007/s00224-023-10130-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A graph is called a sum graph if its vertices can be labelled by distinct positive integers such that there is an edge between two vertices if and only if the sum of their labels is the label of another vertex of the graph. Most papers on sum graphs consider combinatorial questions like the minimum number of isolated vertices that need to be added to a given graph to make it a sum graph. In this paper, we initiate the study of sum graphs from the viewpoint of computational complexity. Notice that every n -vertex sum graph can be represented by a sorted list of n positive integers where edge queries can be answered in $$\\\\mathscr {O}(\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time. Therefore, upper-bounding the numbers used as vertex labels also upper-bounds the space complexity of storing the graph in the database. We show that every n -vertex, m -edge, d -degenerate graph can be made a sum graph by adding at most m isolated vertices to it, such that the largest numbers used as vertex labels grows as $$\\\\mathscr {O}(n^2d)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>d</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . This enables us to store the graph using $$\\\\mathscr {O}(m\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of memory. For sparse graphs (graphs with $$\\\\mathscr {O}(n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> edges), this matches the trivial lower bound of $$\\\\Omega (n\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . As planar graphs and forests have constant degeneracy, our result implies an upper bound of $$\\\\mathscr {O}(n^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> on their label numbers. The previously best known upper bound on the numbers needed for labelling general graphs with the minimum number of isolated vertices was $$\\\\mathscr {O}(4^n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mn>4</mml:mn> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , due to Kratochvíl, Miller & Nguyen (2001). Furthermore, their proof was existential, whereas our labelling can be constructed in polynomial time.\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-023-10130-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10130-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
摘要
当且仅当两个顶点的标记之和为图中另一个顶点的标记时,两个顶点之间存在一条边,并可以用不同的正整数来标记,则图称为和图。大多数关于和图的论文考虑的是组合问题,比如需要将孤立顶点的最小数量添加到给定图中以使其成为和图。本文从计算复杂性的角度出发,对和图进行了研究。注意,每个n顶点和图都可以用n个正整数的排序列表表示,其中边查询可以在$$\mathscr {O}(\log n)$$ O (log n)时间内得到回答。因此,作为顶点标签的数字的上限也限制了在数据库中存储图的空间复杂度。我们证明了每个n顶点,m边,d退化图都可以通过向其添加最多m个孤立顶点来构成求和图,这样用作顶点标签的最大数字增长为$$\mathscr {O}(n^2d)$$ O (n 2d)。这使我们能够使用$$\mathscr {O}(m\log n)$$ O (m log n)位内存来存储图形。对于稀疏图(具有$$\mathscr {O}(n)$$ O (n)条边的图),这与$$\Omega (n\log n)$$ Ω (n log n)的平凡下界相匹配。由于平面图和森林具有恒定的简并性,我们的结果表明它们的标号的上界为$$\mathscr {O}(n^2)$$ O (n 2)。先前已知的标记具有最小孤立顶点数的一般图所需的数的上界是$$\mathscr {O}(4^n)$$ O (4 n),由于Kratochvíl, Miller &Nguyen(2001)。此外,他们的证明是存在的,而我们的标记可以在多项式时间内构造。
Abstract A graph is called a sum graph if its vertices can be labelled by distinct positive integers such that there is an edge between two vertices if and only if the sum of their labels is the label of another vertex of the graph. Most papers on sum graphs consider combinatorial questions like the minimum number of isolated vertices that need to be added to a given graph to make it a sum graph. In this paper, we initiate the study of sum graphs from the viewpoint of computational complexity. Notice that every n -vertex sum graph can be represented by a sorted list of n positive integers where edge queries can be answered in $$\mathscr {O}(\log n)$$ O(logn) time. Therefore, upper-bounding the numbers used as vertex labels also upper-bounds the space complexity of storing the graph in the database. We show that every n -vertex, m -edge, d -degenerate graph can be made a sum graph by adding at most m isolated vertices to it, such that the largest numbers used as vertex labels grows as $$\mathscr {O}(n^2d)$$ O(n2d) . This enables us to store the graph using $$\mathscr {O}(m\log n)$$ O(mlogn) bits of memory. For sparse graphs (graphs with $$\mathscr {O}(n)$$ O(n) edges), this matches the trivial lower bound of $$\Omega (n\log n)$$ Ω(nlogn) . As planar graphs and forests have constant degeneracy, our result implies an upper bound of $$\mathscr {O}(n^2)$$ O(n2) on their label numbers. The previously best known upper bound on the numbers needed for labelling general graphs with the minimum number of isolated vertices was $$\mathscr {O}(4^n)$$ O(4n) , due to Kratochvíl, Miller & Nguyen (2001). Furthermore, their proof was existential, whereas our labelling can be constructed in polynomial time.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.