Caratelli, D., Foreman, W., Friedland, A., Gardiner, S., Gil-Botella, I., Karagiorgi, G., Kirby, M., Miotto, G. Lehmann, Littlejohn, B. R., Mooney, M., Reichenbacher, J., Sousa, A., Scholberg, K., Yu, J., Yang, T., Andringa, S., Asaadi, J., Bezerra, T. J. C., Capozzi, F., Cavanna, F., Church, E., Himmel, A., Junk, T., Klein, J., Lepetic, I., Li, S., Sala, P., Schellman, H., Sorel, M., Wang, J., Wang, M. H. L. S., Wu, W., Zennamo, J., Acero, M. A., Adames, M. R., Amar, H., Andrade, D. A., Andreopoulos, C., Ankowski, A. M., Arroyave, M. A., Aushev, V., Ayala-Torres, M. A., Baldi, P., Backhouse, C., Balantekin, A. B., Barkhouse, W. A., Alzas, P. Barham, Barrow, J. L., Battat, J. B. R., Bazetto, M. C. Q., Beacom, J. F., Behera, B., Bellettini, G., Berger, J., Bezerra, A. T., Bian, J., Bilki, B., Bles, B., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Boran, F., Borkum, A. N., Bostan, N., Brailsford, D., Branca, A., Brunetti, G., Cai, T., Chappell, A., Charitonidis, N., Cintra, P. H. P., Conley, E., Coan, T. E., Cova, P., Cremaldi, L. M., Crespo-Anadon, J. I., Cuesta, C., Dallavalle, R., Davies, G. S., De, S., Neto, P. Dedin, Delgado, M., Delmonte, N., Denton, P. B., De Roeck, A., Dharmapalan, R., Djurcic, Z., Dolek, F., Doran, S., Dorrill, R., Duffy, K. E., Dutta, B., Dvornikov, O., Edayath, S., Evans, J. J., Ezeribe, A. C., Falcone, A., Fani, M., Felix, J.
{"title":"中微子lartpc中的低能物理","authors":"Caratelli, D., Foreman, W., Friedland, A., Gardiner, S., Gil-Botella, I., Karagiorgi, G., Kirby, M., Miotto, G. Lehmann, Littlejohn, B. R., Mooney, M., Reichenbacher, J., Sousa, A., Scholberg, K., Yu, J., Yang, T., Andringa, S., Asaadi, J., Bezerra, T. J. C., Capozzi, F., Cavanna, F., Church, E., Himmel, A., Junk, T., Klein, J., Lepetic, I., Li, S., Sala, P., Schellman, H., Sorel, M., Wang, J., Wang, M. H. L. S., Wu, W., Zennamo, J., Acero, M. A., Adames, M. R., Amar, H., Andrade, D. A., Andreopoulos, C., Ankowski, A. M., Arroyave, M. A., Aushev, V., Ayala-Torres, M. A., Baldi, P., Backhouse, C., Balantekin, A. B., Barkhouse, W. A., Alzas, P. Barham, Barrow, J. L., Battat, J. B. R., Bazetto, M. C. Q., Beacom, J. F., Behera, B., Bellettini, G., Berger, J., Bezerra, A. T., Bian, J., Bilki, B., Bles, B., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Boran, F., Borkum, A. N., Bostan, N., Brailsford, D., Branca, A., Brunetti, G., Cai, T., Chappell, A., Charitonidis, N., Cintra, P. H. P., Conley, E., Coan, T. E., Cova, P., Cremaldi, L. M., Crespo-Anadon, J. I., Cuesta, C., Dallavalle, R., Davies, G. S., De, S., Neto, P. Dedin, Delgado, M., Delmonte, N., Denton, P. B., De Roeck, A., Dharmapalan, R., Djurcic, Z., Dolek, F., Doran, S., Dorrill, R., Duffy, K. E., Dutta, B., Dvornikov, O., Edayath, S., Evans, J. J., Ezeribe, A. C., Falcone, A., Fani, M., Felix, J.","doi":"10.1088/1361-6471/acad17","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-energy physics in neutrino LArTPCs\",\"authors\":\"Caratelli, D., Foreman, W., Friedland, A., Gardiner, S., Gil-Botella, I., Karagiorgi, G., Kirby, M., Miotto, G. Lehmann, Littlejohn, B. R., Mooney, M., Reichenbacher, J., Sousa, A., Scholberg, K., Yu, J., Yang, T., Andringa, S., Asaadi, J., Bezerra, T. J. C., Capozzi, F., Cavanna, F., Church, E., Himmel, A., Junk, T., Klein, J., Lepetic, I., Li, S., Sala, P., Schellman, H., Sorel, M., Wang, J., Wang, M. H. L. S., Wu, W., Zennamo, J., Acero, M. A., Adames, M. R., Amar, H., Andrade, D. A., Andreopoulos, C., Ankowski, A. M., Arroyave, M. A., Aushev, V., Ayala-Torres, M. A., Baldi, P., Backhouse, C., Balantekin, A. B., Barkhouse, W. A., Alzas, P. Barham, Barrow, J. L., Battat, J. B. R., Bazetto, M. C. Q., Beacom, J. F., Behera, B., Bellettini, G., Berger, J., Bezerra, A. T., Bian, J., Bilki, B., Bles, B., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Boran, F., Borkum, A. N., Bostan, N., Brailsford, D., Branca, A., Brunetti, G., Cai, T., Chappell, A., Charitonidis, N., Cintra, P. H. P., Conley, E., Coan, T. E., Cova, P., Cremaldi, L. M., Crespo-Anadon, J. I., Cuesta, C., Dallavalle, R., Davies, G. S., De, S., Neto, P. Dedin, Delgado, M., Delmonte, N., Denton, P. B., De Roeck, A., Dharmapalan, R., Djurcic, Z., Dolek, F., Doran, S., Dorrill, R., Duffy, K. E., Dutta, B., Dvornikov, O., Edayath, S., Evans, J. J., Ezeribe, A. C., Falcone, A., Fani, M., Felix, J.\",\"doi\":\"10.1088/1361-6471/acad17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.\",\"PeriodicalId\":16770,\"journal\":{\"name\":\"Journal of Physics G\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/acad17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/acad17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.