1-交交集对系统的若干问题与结果

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Zoltán Füredi, András Gyárfás, Zoltán Király
{"title":"1-交交集对系统的若干问题与结果","authors":"Zoltán Füredi, András Gyárfás, Zoltán Király","doi":"10.1017/s0963548323000044","DOIUrl":null,"url":null,"abstract":"Abstract The notion of cross-intersecting set pair system of size $m$ , $ (\\{A_i\\}_{i=1}^m, \\{B_i\\}_{i=1}^m )$ with $A_i\\cap B_i=\\emptyset$ and $A_i\\cap B_j\\ne \\emptyset$ , was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\\le\\binom{a+b}{a}$ if $|A_i|\\le a$ and $|B_i|\\le b$ for each $i$ . Our central problem is to see how this bound changes with the additional condition $|A_i\\cap B_j|=1$ for $i\\ne j$ . Such a system is called $1$ -cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is at least $5^{n/2}$ for $n$ even, $a=b=n$ , equal to $\\bigl (\\lfloor \\frac{n}{2}\\rfloor +1\\bigr )\\bigl (\\lceil \\frac{n}{2}\\rceil +1\\bigr )$ if $a=2$ and $b=n\\ge 4$ , at most $|\\cup _{i=1}^m A_i|$ , asymptotically $n^2$ if $\\{A_i\\}$ is a linear hypergraph ( $|A_i\\cap A_j|\\le 1$ for $i\\ne j$ ), asymptotically ${1\\over 2}n^2$ if $\\{A_i\\}$ and $\\{B_i\\}$ are both linear hypergraphs.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Problems and results on 1-cross-intersecting set pair systems\",\"authors\":\"Zoltán Füredi, András Gyárfás, Zoltán Király\",\"doi\":\"10.1017/s0963548323000044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The notion of cross-intersecting set pair system of size $m$ , $ (\\\\{A_i\\\\}_{i=1}^m, \\\\{B_i\\\\}_{i=1}^m )$ with $A_i\\\\cap B_i=\\\\emptyset$ and $A_i\\\\cap B_j\\\\ne \\\\emptyset$ , was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\\\\le\\\\binom{a+b}{a}$ if $|A_i|\\\\le a$ and $|B_i|\\\\le b$ for each $i$ . Our central problem is to see how this bound changes with the additional condition $|A_i\\\\cap B_j|=1$ for $i\\\\ne j$ . Such a system is called $1$ -cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is at least $5^{n/2}$ for $n$ even, $a=b=n$ , equal to $\\\\bigl (\\\\lfloor \\\\frac{n}{2}\\\\rfloor +1\\\\bigr )\\\\bigl (\\\\lceil \\\\frac{n}{2}\\\\rceil +1\\\\bigr )$ if $a=2$ and $b=n\\\\ge 4$ , at most $|\\\\cup _{i=1}^m A_i|$ , asymptotically $n^2$ if $\\\\{A_i\\\\}$ is a linear hypergraph ( $|A_i\\\\cap A_j|\\\\le 1$ for $i\\\\ne j$ ), asymptotically ${1\\\\over 2}n^2$ if $\\\\{A_i\\\\}$ and $\\\\{B_i\\\\}$ are both linear hypergraphs.\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

摘要:讨论大小的交交集对系统的概念 $m$ , $ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$ 有 $A_i\cap B_i=\emptyset$ 和 $A_i\cap B_j\ne \emptyset$ ,由Bollobás引入,成为极值组合学的重要工具。他的经典结果表明 $m\le\binom{a+b}{a}$ 如果 $|A_i|\le a$ 和 $|B_i|\le b$ 对于每一个 $i$ . 我们的中心问题是看这个边界如何随着附加条件的变化而变化 $|A_i\cap B_j|=1$ 为了 $i\ne j$ . 这样的系统叫做 $1$ -交叉交叉。我们证明了这些系统与完美图、图的团划分和有限几何有关。我们证明了它们的最大尺寸是 $5^{n/2}$ 为了 $n$ 甚至, $a=b=n$ ,等于 $\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$ 如果 $a=2$ 和 $b=n\ge 4$ ,至多 $|\cup _{i=1}^m A_i|$ ,渐近地 $n^2$ 如果 $\{A_i\}$ 是线性超图( $|A_i\cap A_j|\le 1$ 为了 $i\ne j$ ),渐近 ${1\over 2}n^2$ 如果 $\{A_i\}$ 和 $\{B_i\}$ 都是线性超图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problems and results on 1-cross-intersecting set pair systems
Abstract The notion of cross-intersecting set pair system of size $m$ , $ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$ with $A_i\cap B_i=\emptyset$ and $A_i\cap B_j\ne \emptyset$ , was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\le\binom{a+b}{a}$ if $|A_i|\le a$ and $|B_i|\le b$ for each $i$ . Our central problem is to see how this bound changes with the additional condition $|A_i\cap B_j|=1$ for $i\ne j$ . Such a system is called $1$ -cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is at least $5^{n/2}$ for $n$ even, $a=b=n$ , equal to $\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$ if $a=2$ and $b=n\ge 4$ , at most $|\cup _{i=1}^m A_i|$ , asymptotically $n^2$ if $\{A_i\}$ is a linear hypergraph ( $|A_i\cap A_j|\le 1$ for $i\ne j$ ), asymptotically ${1\over 2}n^2$ if $\{A_i\}$ and $\{B_i\}$ are both linear hypergraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信