无穷远处的压力和负曲率处的强正递归

IF 1.1 3区 数学 Q1 MATHEMATICS
Sébastien Gouëzel, Camille Noûs, Barbara Schapira, Samuel Tapie, Felipe Riquelme
{"title":"无穷远处的压力和负曲率处的强正递归","authors":"Sébastien Gouëzel, Camille Noûs, Barbara Schapira, Samuel Tapie, Felipe Riquelme","doi":"10.4171/cmh/552","DOIUrl":null,"url":null,"abstract":"In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincaré series, and entropy (pressure) of invariant measures. We show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong positive recurrence in this geometric context. A potential is said to be strongly positively recurrent when its pressure at infinity is strictly smaller than the full topological pressure. We show, in particular, that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong positively recurrent potentials and many examples.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pressure at infinity and strong positive recurrence in negative curvature\",\"authors\":\"Sébastien Gouëzel, Camille Noûs, Barbara Schapira, Samuel Tapie, Felipe Riquelme\",\"doi\":\"10.4171/cmh/552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincaré series, and entropy (pressure) of invariant measures. We show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong positive recurrence in this geometric context. A potential is said to be strongly positively recurrent when its pressure at infinity is strictly smaller than the full topological pressure. We show, in particular, that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong positively recurrent potentials and many examples.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/552\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/cmh/552","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在非紧负弯曲流形的测地线流的背景下,我们通过周期轨道的增长、poincar级数的临界指数和不变测度的熵(压力),提出了无穷远处熵和压力的三种不同定义。我们证明这些概念是一致的。由于这些熵和无穷压力,我们在这种几何背景下彻底研究了强正递归的概念。当一个势在无穷远处的压力严格小于整个拓扑压力时,我们就说它是强正循环的。我们特别证明,如果一个势是强正循环的,那么它就有一个有限的吉布斯测度。我们还提供了简单的标准,允许建立如此强大的正循环电位和许多例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure at infinity and strong positive recurrence in negative curvature
In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincaré series, and entropy (pressure) of invariant measures. We show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong positive recurrence in this geometric context. A potential is said to be strongly positively recurrent when its pressure at infinity is strictly smaller than the full topological pressure. We show, in particular, that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong positively recurrent potentials and many examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信