banach -空间值Finsler γ-Laplacian的改进可微性

IF 0.8 4区 数学 Q2 MATHEMATICS
Max Goering, Lukas Koch
{"title":"banach -空间值Finsler γ-Laplacian的改进可微性","authors":"Max Goering, Lukas Koch","doi":"10.5802/crmath.474","DOIUrl":null,"url":null,"abstract":"We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"57 2","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on improved differentiability for the Banach-space valued Finsler γ-Laplacian\",\"authors\":\"Max Goering, Lukas Koch\",\"doi\":\"10.5802/crmath.474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"57 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.474\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.474","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了在σ-凸,τ-光滑Banach空间上定义的Banach空间值Finsler γ-Laplacian解的改进分数可微性。我们考虑的算子是非线性和非常退化的椭圆型。我们的结果已经是新的了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on improved differentiability for the Banach-space valued Finsler γ-Laplacian
We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信