banach -空间值Finsler γ-Laplacian的改进可微性

Pub Date : 2023-10-24 DOI:10.5802/crmath.474
Max Goering, Lukas Koch
{"title":"banach -空间值Finsler γ-Laplacian的改进可微性","authors":"Max Goering, Lukas Koch","doi":"10.5802/crmath.474","DOIUrl":null,"url":null,"abstract":"We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on improved differentiability for the Banach-space valued Finsler γ-Laplacian\",\"authors\":\"Max Goering, Lukas Koch\",\"doi\":\"10.5802/crmath.474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了在σ-凸,τ-光滑Banach空间上定义的Banach空间值Finsler γ-Laplacian解的改进分数可微性。我们考虑的算子是非线性和非常退化的椭圆型。我们的结果已经是新的了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on improved differentiability for the Banach-space valued Finsler γ-Laplacian
We obtain improved fractional differentiability of solutions to the Banach-space valued Finsler γ-Laplacian defined on a σ-convex, τ-smooth Banach space. The operators we consider are non-linear and very degenerately elliptic. Our results are new already in the ℝ-valued setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信