期权定价:例子和悬而未决的问题

IF 0.8 Q3 STATISTICS & PROBABILITY
Nikolaos Halidias
{"title":"期权定价:例子和悬而未决的问题","authors":"Nikolaos Halidias","doi":"10.1515/mcma-2023-2014","DOIUrl":null,"url":null,"abstract":"Abstract There is no method of predicting the price of an option other than hedging strategies such as the binomial hedging strategy, the Black–Scholes hedging strategy and others. We will study these two basic hedging strategies in terms of their feasibility, and we will see that the Black–Scholes hedging strategy is not feasible because this strategy demands instantaneously rebuilding the replicating portfolio. Consequently, the real world prices of the options are not relevant at all with the Black–Scholes hedging strategy! We will suitably redefine the binomial hedging strategy so that it will be practically useful and present other feasible and generally more effective hedging strategies with some of them practically useful for options with no tradable underlying assets. Finally, we will mention some open questions related to the above.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option pricing: Examples and open problems\",\"authors\":\"Nikolaos Halidias\",\"doi\":\"10.1515/mcma-2023-2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There is no method of predicting the price of an option other than hedging strategies such as the binomial hedging strategy, the Black–Scholes hedging strategy and others. We will study these two basic hedging strategies in terms of their feasibility, and we will see that the Black–Scholes hedging strategy is not feasible because this strategy demands instantaneously rebuilding the replicating portfolio. Consequently, the real world prices of the options are not relevant at all with the Black–Scholes hedging strategy! We will suitably redefine the binomial hedging strategy so that it will be practically useful and present other feasible and generally more effective hedging strategies with some of them practically useful for options with no tradable underlying assets. Finally, we will mention some open questions related to the above.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要期权价格预测除了套期保值策略,如二项套期保值策略、布莱克-斯科尔斯套期保值策略等,没有其他方法。我们将研究这两种基本对冲策略的可行性,我们将看到布莱克-斯科尔斯对冲策略不可行,因为该策略需要立即重建复制投资组合。因此,期权的真实世界价格与布莱克-斯科尔斯对冲策略完全无关!我们将适当地重新定义二项对冲策略,使其在实际中有用,并提出其他可行且通常更有效的对冲策略,其中一些策略对没有可交易标的资产的期权实际有用。最后,我们将提到与上述相关的一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option pricing: Examples and open problems
Abstract There is no method of predicting the price of an option other than hedging strategies such as the binomial hedging strategy, the Black–Scholes hedging strategy and others. We will study these two basic hedging strategies in terms of their feasibility, and we will see that the Black–Scholes hedging strategy is not feasible because this strategy demands instantaneously rebuilding the replicating portfolio. Consequently, the real world prices of the options are not relevant at all with the Black–Scholes hedging strategy! We will suitably redefine the binomial hedging strategy so that it will be practically useful and present other feasible and generally more effective hedging strategies with some of them practically useful for options with no tradable underlying assets. Finally, we will mention some open questions related to the above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信