关于Birman-Krein定理

IF 0.8 4区 数学 Q2 MATHEMATICS
Vanderléa R. Bazao, César R. de Oliveira, Pablo A. Diaz
{"title":"关于Birman-Krein定理","authors":"Vanderléa R. Bazao, César R. de Oliveira, Pablo A. Diaz","doi":"10.5802/crmath.473","DOIUrl":null,"url":null,"abstract":"It is shown that if X is a unitary operator so that a singular subspace of U is unitarily equivalent to a singular subspace of UX (or XU), for each unitary operator U, then X is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"21 10","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Birman–Krein Theorem\",\"authors\":\"Vanderléa R. Bazao, César R. de Oliveira, Pablo A. Diaz\",\"doi\":\"10.5802/crmath.473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that if X is a unitary operator so that a singular subspace of U is unitarily equivalent to a singular subspace of UX (or XU), for each unitary operator U, then X is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"21 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.473\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.473","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了如果X是一个幺正算子,使得U的奇异子空间幺正等价于UX(或XU)的奇异子空间,对于每一个幺正算子U,则X是单位算子。换句话说,在这种情况下,不存在包含奇异谱子空间保存的Birman-Krein定理的非平凡推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Birman–Krein Theorem
It is shown that if X is a unitary operator so that a singular subspace of U is unitarily equivalent to a singular subspace of UX (or XU), for each unitary operator U, then X is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信