环状网与李维子代数

IF 0.6 2区 数学 Q3 MATHEMATICS
Abel Lacabanne, Daniel Tubbenhauer, Pedro Vaz
{"title":"环状网与李维子代数","authors":"Abel Lacabanne, Daniel Tubbenhauer, Pedro Vaz","doi":"10.4171/jca/76","DOIUrl":null,"url":null,"abstract":"For any Levi subalgebra of the form $\\mathfrak{l}=\\mathfrak{gl}{l{1}}\\oplus\\cdots\\oplus\\mathfrak{gl}{l{d}}\\subseteq\\mathfrak{gl}{n}$ we construct a quotient of the category of annular quantum $\\mathfrak{gl}{n}$ webs that is equivalent to the category of finite-dimensional representations of quantum $\\mathfrak{l}$ generated by exterior powers of the vector representation. This can be interpreted as an annular version of skew Howe duality, gives a description of the representation category of $\\mathfrak{l}$ by additive idempotent completion, and a web version of the generalized blob algebra.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Annular webs and Levi subalgebras\",\"authors\":\"Abel Lacabanne, Daniel Tubbenhauer, Pedro Vaz\",\"doi\":\"10.4171/jca/76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any Levi subalgebra of the form $\\\\mathfrak{l}=\\\\mathfrak{gl}{l{1}}\\\\oplus\\\\cdots\\\\oplus\\\\mathfrak{gl}{l{d}}\\\\subseteq\\\\mathfrak{gl}{n}$ we construct a quotient of the category of annular quantum $\\\\mathfrak{gl}{n}$ webs that is equivalent to the category of finite-dimensional representations of quantum $\\\\mathfrak{l}$ generated by exterior powers of the vector representation. This can be interpreted as an annular version of skew Howe duality, gives a description of the representation category of $\\\\mathfrak{l}$ by additive idempotent completion, and a web version of the generalized blob algebra.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/76\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jca/76","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于任何形式为$\mathfrak{l}=\mathfrak{gl}{l{1}}\oplus\cdots\oplus\mathfrak{gl}{l{d}}\subseteq\mathfrak{gl}{n}$的Levi子代数,我们构造了一个环量子$\mathfrak{gl}{n}$ webs范畴的商,它等价于由向量表示的外部幂产生的量子$\mathfrak{l}$的有限维表示范畴。这可以解释为斜Howe对偶的一个环形版本,给出了$\mathfrak{l}$的表示范畴的一个加性幂等补全的描述,以及广义blob代数的一个网络版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annular webs and Levi subalgebras
For any Levi subalgebra of the form $\mathfrak{l}=\mathfrak{gl}{l{1}}\oplus\cdots\oplus\mathfrak{gl}{l{d}}\subseteq\mathfrak{gl}{n}$ we construct a quotient of the category of annular quantum $\mathfrak{gl}{n}$ webs that is equivalent to the category of finite-dimensional representations of quantum $\mathfrak{l}$ generated by exterior powers of the vector representation. This can be interpreted as an annular version of skew Howe duality, gives a description of the representation category of $\mathfrak{l}$ by additive idempotent completion, and a web version of the generalized blob algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信