C. P. B. Fernandes, W. P. Coutinho, J. W. L. Silva, M. D. Santos, G. P. Oliveira
{"title":"跨流动单元多目标的定向井最优路径规划","authors":"C. P. B. Fernandes, W. P. Coutinho, J. W. L. Silva, M. D. Santos, G. P. Oliveira","doi":"10.1007/s13202-023-01709-z","DOIUrl":null,"url":null,"abstract":"Abstract Over the past decades, directional drilling has continuously advanced to increase hydrocarbon recovery by effectively targeting high-productivity reservoirs. However, many existing approaches primarily focus on heuristic optimization algorithms. Moreover, existing models often neglect the incorporation of petrophysical attributes that can significantly impact the selection of production targets, such as the reservoir quality indicator. This article introduces a novel application of mixed-integer programming to define directional drilling paths, considering practical aspects of interest. The paths are subject to drift angle constraints and reference coordinates that align with the optimal reservoir targets. Such targets are identified using the authors’ proposed technique of maximum closeness centrality and the geologic model of hydraulic flow units. In order to evaluate the effectiveness of this approach, a realistic model of the Campos Basin in Brazil is studied. The results reveal that the highest recovery factors obtained with the proposed methodology (17%) exceed the historical average recovery factor of the studied reservoir (15.66%). We believe this study can contribute to the ongoing efforts to enhance directional drilling and maximize the production potential of offshore oil and gas reservoirs.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"39 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal path planning for directional wells across flow units’ many-targets\",\"authors\":\"C. P. B. Fernandes, W. P. Coutinho, J. W. L. Silva, M. D. Santos, G. P. Oliveira\",\"doi\":\"10.1007/s13202-023-01709-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Over the past decades, directional drilling has continuously advanced to increase hydrocarbon recovery by effectively targeting high-productivity reservoirs. However, many existing approaches primarily focus on heuristic optimization algorithms. Moreover, existing models often neglect the incorporation of petrophysical attributes that can significantly impact the selection of production targets, such as the reservoir quality indicator. This article introduces a novel application of mixed-integer programming to define directional drilling paths, considering practical aspects of interest. The paths are subject to drift angle constraints and reference coordinates that align with the optimal reservoir targets. Such targets are identified using the authors’ proposed technique of maximum closeness centrality and the geologic model of hydraulic flow units. In order to evaluate the effectiveness of this approach, a realistic model of the Campos Basin in Brazil is studied. The results reveal that the highest recovery factors obtained with the proposed methodology (17%) exceed the historical average recovery factor of the studied reservoir (15.66%). We believe this study can contribute to the ongoing efforts to enhance directional drilling and maximize the production potential of offshore oil and gas reservoirs.\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-023-01709-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01709-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal path planning for directional wells across flow units’ many-targets
Abstract Over the past decades, directional drilling has continuously advanced to increase hydrocarbon recovery by effectively targeting high-productivity reservoirs. However, many existing approaches primarily focus on heuristic optimization algorithms. Moreover, existing models often neglect the incorporation of petrophysical attributes that can significantly impact the selection of production targets, such as the reservoir quality indicator. This article introduces a novel application of mixed-integer programming to define directional drilling paths, considering practical aspects of interest. The paths are subject to drift angle constraints and reference coordinates that align with the optimal reservoir targets. Such targets are identified using the authors’ proposed technique of maximum closeness centrality and the geologic model of hydraulic flow units. In order to evaluate the effectiveness of this approach, a realistic model of the Campos Basin in Brazil is studied. The results reveal that the highest recovery factors obtained with the proposed methodology (17%) exceed the historical average recovery factor of the studied reservoir (15.66%). We believe this study can contribute to the ongoing efforts to enhance directional drilling and maximize the production potential of offshore oil and gas reservoirs.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies