具有不确定温度相关电导率的热方程的无条件能量稳定和一阶精确数值格式

IF 1.3 4区 数学 Q1 MATHEMATICS
Fiordilino, J. A., Winger, M.
{"title":"具有不确定温度相关电导率的热方程的无条件能量稳定和一阶精确数值格式","authors":"Fiordilino, J. A., Winger, M.","doi":"10.4208/ijnam2023-1035","DOIUrl":null,"url":null,"abstract":"In this paper, we present first-order accurate numerical methods for solution of the heat equation with uncertain temperature-dependent thermal conductivity. Each algorithm yields a shared coefficient matrix for the ensemble set improving computational efficiency. Both mixed and Robin-type boundary conditions are treated. In contrast with alternative, related methodologies, stability and convergence are unconditional. In particular, we prove unconditional, energy stability and optimal-order error estimates. A battery of numerical tests are presented to illustrate both the theory and application of these algorithms.","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"44 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unconditionally Energy Stable and First-Order Accurate Numerical Schemes for the Heat Equation with Uncertain Temperature-Dependent Conductivity\",\"authors\":\"Fiordilino, J. A., Winger, M.\",\"doi\":\"10.4208/ijnam2023-1035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present first-order accurate numerical methods for solution of the heat equation with uncertain temperature-dependent thermal conductivity. Each algorithm yields a shared coefficient matrix for the ensemble set improving computational efficiency. Both mixed and Robin-type boundary conditions are treated. In contrast with alternative, related methodologies, stability and convergence are unconditional. In particular, we prove unconditional, energy stability and optimal-order error estimates. A battery of numerical tests are presented to illustrate both the theory and application of these algorithms.\",\"PeriodicalId\":50301,\"journal\":{\"name\":\"International Journal of Numerical Analysis and Modeling\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2023-1035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/ijnam2023-1035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了具有不确定温度相关导热系数的热方程的一阶精确数值解法。每个算法为集合集生成一个共享系数矩阵,提高了计算效率。对混合边界条件和罗宾型边界条件进行了处理。与其他相关方法相比,稳定性和收敛性是无条件的。特别地,我们证明了无条件、能量稳定性和最优阶误差估计。通过一系列的数值试验来说明这些算法的理论和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally Energy Stable and First-Order Accurate Numerical Schemes for the Heat Equation with Uncertain Temperature-Dependent Conductivity
In this paper, we present first-order accurate numerical methods for solution of the heat equation with uncertain temperature-dependent thermal conductivity. Each algorithm yields a shared coefficient matrix for the ensemble set improving computational efficiency. Both mixed and Robin-type boundary conditions are treated. In contrast with alternative, related methodologies, stability and convergence are unconditional. In particular, we prove unconditional, energy stability and optimal-order error estimates. A battery of numerical tests are presented to illustrate both the theory and application of these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
1
审稿时长
6-12 weeks
期刊介绍: The journal is directed to the broad spectrum of researchers in numerical methods throughout science and engineering, and publishes high quality original papers in all fields of numerical analysis and mathematical modeling including: numerical differential equations, scientific computing, linear algebra, control, optimization, and related areas of engineering and scientific applications. The journal welcomes the contribution of original developments of numerical methods, mathematical analysis leading to better understanding of the existing algorithms, and applications of numerical techniques to real engineering and scientific problems. Rigorous studies of the convergence of algorithms, their accuracy and stability, and their computational complexity are appropriate for this journal. Papers addressing new numerical algorithms and techniques, demonstrating the potential of some novel ideas, describing experiments involving new models and simulations for practical problems are also suitable topics for the journal. The journal welcomes survey articles which summarize state of art knowledge and present open problems of particular numerical techniques and mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信