基于编码系数相似度的手指静脉多特征稀疏表示

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lizhen Zhou, Lu Yang, Deqian Fu, Gongping Yang
{"title":"基于编码系数相似度的手指静脉多特征稀疏表示","authors":"Lizhen Zhou, Lu Yang, Deqian Fu, Gongping Yang","doi":"10.1049/2023/9253739","DOIUrl":null,"url":null,"abstract":"Finger vein recognition is a promising biometric technology that has received significant research attention. However, most of the existing works often relied on a single feature, which failed to fully exploit the discriminative information in finger vein images, and therefore led to a limited recognition performance. To overcome this limitation, this paper proposes an encoding coefficient similarity-based multifeature sparse representation method for finger vein recognition. The proposed method not only uses multiple features to extract comprehensive information from finger vein images, but also obtains more discriminative information through constraints in the objective function. The sparsity constraint retains the key information of each feature, and the similarity constraint explores the shared information among the features. Furthermore, the proposed method is capable of fusing all kinds of features, not limited to specific ones. The optimization problem of the proposed method is efficiently solved using the alternating direction multiplier method algorithm. Experimental results on two public finger vein databases HKPU-FV and SDU-FV show that the proposed method achieves good recognition performance.","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"41 10","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encoding Coefficient Similarity-Based Multifeature Sparse Representation for Finger Vein Recognition\",\"authors\":\"Lizhen Zhou, Lu Yang, Deqian Fu, Gongping Yang\",\"doi\":\"10.1049/2023/9253739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finger vein recognition is a promising biometric technology that has received significant research attention. However, most of the existing works often relied on a single feature, which failed to fully exploit the discriminative information in finger vein images, and therefore led to a limited recognition performance. To overcome this limitation, this paper proposes an encoding coefficient similarity-based multifeature sparse representation method for finger vein recognition. The proposed method not only uses multiple features to extract comprehensive information from finger vein images, but also obtains more discriminative information through constraints in the objective function. The sparsity constraint retains the key information of each feature, and the similarity constraint explores the shared information among the features. Furthermore, the proposed method is capable of fusing all kinds of features, not limited to specific ones. The optimization problem of the proposed method is efficiently solved using the alternating direction multiplier method algorithm. Experimental results on two public finger vein databases HKPU-FV and SDU-FV show that the proposed method achieves good recognition performance.\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"41 10\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/9253739\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/9253739","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

手指静脉识别是一种很有前途的生物识别技术,受到了广泛的关注。然而,现有的大部分工作往往依赖于单一的特征,不能充分利用手指静脉图像中的判别信息,从而导致识别性能有限。为了克服这一局限性,本文提出了一种基于编码系数相似度的手指静脉多特征稀疏表示方法。该方法不仅利用多种特征提取手指静脉图像的综合信息,而且通过目标函数中的约束条件获得更多的判别信息。稀疏性约束保留每个特征的关键信息,相似性约束探索特征之间的共享信息。此外,所提出的方法能够融合各种特征,而不局限于特定的特征。采用交替方向乘法器算法有效地解决了该方法的优化问题。在两个公共指静脉数据库HKPU-FV和SDU-FV上的实验结果表明,该方法取得了较好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding Coefficient Similarity-Based Multifeature Sparse Representation for Finger Vein Recognition
Finger vein recognition is a promising biometric technology that has received significant research attention. However, most of the existing works often relied on a single feature, which failed to fully exploit the discriminative information in finger vein images, and therefore led to a limited recognition performance. To overcome this limitation, this paper proposes an encoding coefficient similarity-based multifeature sparse representation method for finger vein recognition. The proposed method not only uses multiple features to extract comprehensive information from finger vein images, but also obtains more discriminative information through constraints in the objective function. The sparsity constraint retains the key information of each feature, and the similarity constraint explores the shared information among the features. Furthermore, the proposed method is capable of fusing all kinds of features, not limited to specific ones. The optimization problem of the proposed method is efficiently solved using the alternating direction multiplier method algorithm. Experimental results on two public finger vein databases HKPU-FV and SDU-FV show that the proposed method achieves good recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信