论五重立方的各种平面的几何形状

Pub Date : 2023-10-25 DOI:10.46298/epiga.2023.10806
René Mboro
{"title":"论五重立方的各种平面的几何形状","authors":"René Mboro","doi":"10.46298/epiga.2023.10806","DOIUrl":null,"url":null,"abstract":"This note presents some properties of the variety of planes $F_2(X)\\subset G(3,7)$ of a cubic $5$-fold $X\\subset \\mathbb P^6$. A cotangent bundle exact sequence is first derived from the remark made by Iliev and Manivel that $F_2(X)$ sits as a Lagrangian subvariety of the variety of lines of a cubic $4$-fold, which is a hyperplane section of $X$. Using the sequence, the Gauss map of $F_2(X)$ is then proven to be an embedding. The last section is devoted to the relation between the variety of osculating planes of a cubic $4$-fold and the variety of planes of the associated cyclic cubic $5$-fold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on the geometry of the variety of planes of a cubic fivefold\",\"authors\":\"René Mboro\",\"doi\":\"10.46298/epiga.2023.10806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note presents some properties of the variety of planes $F_2(X)\\\\subset G(3,7)$ of a cubic $5$-fold $X\\\\subset \\\\mathbb P^6$. A cotangent bundle exact sequence is first derived from the remark made by Iliev and Manivel that $F_2(X)$ sits as a Lagrangian subvariety of the variety of lines of a cubic $4$-fold, which is a hyperplane section of $X$. Using the sequence, the Gauss map of $F_2(X)$ is then proven to be an embedding. The last section is devoted to the relation between the variety of osculating planes of a cubic $4$-fold and the variety of planes of the associated cyclic cubic $5$-fold.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了三次元$5$-fold $X\子集$ mathbb P^6$的各种平面$F_2(X)\子集G(3,7)$的一些性质。协切束精确序列是由Iliev和Manivel提出的$F_2(X)$是$X$的一个超平面截面的三次$4$-fold的线的一个拉格朗日子变体所导出的。利用该序列,证明了$F_2(X)$的高斯映射是一个嵌入。最后一节讨论了一个立方$4 -fold的各种相交平面与相应的循环立方$5 -fold的各种平面之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Remarks on the geometry of the variety of planes of a cubic fivefold
This note presents some properties of the variety of planes $F_2(X)\subset G(3,7)$ of a cubic $5$-fold $X\subset \mathbb P^6$. A cotangent bundle exact sequence is first derived from the remark made by Iliev and Manivel that $F_2(X)$ sits as a Lagrangian subvariety of the variety of lines of a cubic $4$-fold, which is a hyperplane section of $X$. Using the sequence, the Gauss map of $F_2(X)$ is then proven to be an embedding. The last section is devoted to the relation between the variety of osculating planes of a cubic $4$-fold and the variety of planes of the associated cyclic cubic $5$-fold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信