非均匀自引力气体云的绝热坍缩

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2023-10-25 DOI:10.1209/0295-5075/ad06ee
Francisco Eugenio Mendonca da Silveira
{"title":"非均匀自引力气体云的绝热坍缩","authors":"Francisco Eugenio Mendonca da Silveira","doi":"10.1209/0295-5075/ad06ee","DOIUrl":null,"url":null,"abstract":"Abstract In this letter, we find the critical mass of a self-gravitating, spherically symmetric gas cloud, above which the fluid, within the bubble, collapses. Our analysis departs from a non-homogeneous equilibrium density, satisfying the Boltzmann relation. A time scale is defined in terms of the adiabatic index of the gas. Subsequently, a sinusoidal perturbation around equilibrium is regarded, thereby leading to a dispersion relation of frequency with wavelength, which does not depend on geometrical curvature effects. Such a formulation clearly justifies that the collapse occurs much faster than predicted by the well-known Jeans approach. The equilibrium profiles of the density, gravitational field, and potential are obtained as functions of the spherical radius coordinate at marginal instability. Since our theory captures the essential physics of gravitational collapse, it can be used as the starting point for several advancements in galactic dynamics.","PeriodicalId":11738,"journal":{"name":"EPL","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adiabatic collapse of non-homogeneous self-gravitating gas cloud\",\"authors\":\"Francisco Eugenio Mendonca da Silveira\",\"doi\":\"10.1209/0295-5075/ad06ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this letter, we find the critical mass of a self-gravitating, spherically symmetric gas cloud, above which the fluid, within the bubble, collapses. Our analysis departs from a non-homogeneous equilibrium density, satisfying the Boltzmann relation. A time scale is defined in terms of the adiabatic index of the gas. Subsequently, a sinusoidal perturbation around equilibrium is regarded, thereby leading to a dispersion relation of frequency with wavelength, which does not depend on geometrical curvature effects. Such a formulation clearly justifies that the collapse occurs much faster than predicted by the well-known Jeans approach. The equilibrium profiles of the density, gravitational field, and potential are obtained as functions of the spherical radius coordinate at marginal instability. Since our theory captures the essential physics of gravitational collapse, it can be used as the starting point for several advancements in galactic dynamics.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad06ee\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad06ee","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们发现了一个自引力的球对称气体云的临界质量,在此之上,气泡内的流体会坍缩。我们的分析从非均匀平衡密度出发,满足玻尔兹曼关系。时间尺度是根据气体的绝热指数来定义的。随后,考虑平衡周围的正弦扰动,从而导致频率与波长的色散关系,该关系不依赖于几何曲率效应。这样的公式清楚地证明,坍缩发生的速度比著名的金斯方法预测的要快得多。得到了密度、重力场和势在边缘不稳定状态下作为球半径坐标的函数的平衡曲线。由于我们的理论抓住了引力坍缩的基本物理原理,它可以作为银河系动力学若干进展的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adiabatic collapse of non-homogeneous self-gravitating gas cloud
Abstract In this letter, we find the critical mass of a self-gravitating, spherically symmetric gas cloud, above which the fluid, within the bubble, collapses. Our analysis departs from a non-homogeneous equilibrium density, satisfying the Boltzmann relation. A time scale is defined in terms of the adiabatic index of the gas. Subsequently, a sinusoidal perturbation around equilibrium is regarded, thereby leading to a dispersion relation of frequency with wavelength, which does not depend on geometrical curvature effects. Such a formulation clearly justifies that the collapse occurs much faster than predicted by the well-known Jeans approach. The equilibrium profiles of the density, gravitational field, and potential are obtained as functions of the spherical radius coordinate at marginal instability. Since our theory captures the essential physics of gravitational collapse, it can be used as the starting point for several advancements in galactic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信