用涡流阻尼器抑制薄壁零件的铣削颤振

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Junming Hou, Baosheng Wang, Hongyan Hao
{"title":"用涡流阻尼器抑制薄壁零件的铣削颤振","authors":"Junming Hou, Baosheng Wang, Hongyan Hao","doi":"10.1155/2023/9533689","DOIUrl":null,"url":null,"abstract":"Machining vibrations often occur when working with thin-walled workpieces. One effective method to mitigate these vibrations is by using a damper, which can enhance machining accuracy, surface finish, and tool life. However, traditional contact dampers have a drawback in that they require direct contact with the workpiece, leading to friction, wear, increased cutting forces, and reduced machining accuracy. In contrast, electromagnetic eddy current dampers are noncontact dampers that can effectively suppress machining vibrations without the need for physical contact. In this study, a method to suppress machining vibrations in thin-walled workpieces using electromagnetic eddy current dampers is proposed. By establishing a theoretical model for the electromagnetic damper, the damping force and equivalent damping of the damper are determined. Subsequently, the impact of electromagnetic dampers on frequency response functions and machining vibrations are investigated through hammer impact tests. The results indicate that increasing the surface damper voltage and reducing the air gap both enhance the equivalent damping of the electromagnetic eddy current damper. Moreover, cutting experiments are conducted to analyze the surface roughness of thin-walled workpieces with and without dampers. The results demonstrate that the eddy current damper can effectively increase the equivalent damping and provide the necessary damping force to suppress machining chatter. Overall, the proposed method utilizing electromagnetic eddy current dampers presents a promising solution for suppressing machining vibrations in thin-walled workpieces.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing Milling Chatter of Thin-Walled Parts by Eddy Current Dampers\",\"authors\":\"Junming Hou, Baosheng Wang, Hongyan Hao\",\"doi\":\"10.1155/2023/9533689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machining vibrations often occur when working with thin-walled workpieces. One effective method to mitigate these vibrations is by using a damper, which can enhance machining accuracy, surface finish, and tool life. However, traditional contact dampers have a drawback in that they require direct contact with the workpiece, leading to friction, wear, increased cutting forces, and reduced machining accuracy. In contrast, electromagnetic eddy current dampers are noncontact dampers that can effectively suppress machining vibrations without the need for physical contact. In this study, a method to suppress machining vibrations in thin-walled workpieces using electromagnetic eddy current dampers is proposed. By establishing a theoretical model for the electromagnetic damper, the damping force and equivalent damping of the damper are determined. Subsequently, the impact of electromagnetic dampers on frequency response functions and machining vibrations are investigated through hammer impact tests. The results indicate that increasing the surface damper voltage and reducing the air gap both enhance the equivalent damping of the electromagnetic eddy current damper. Moreover, cutting experiments are conducted to analyze the surface roughness of thin-walled workpieces with and without dampers. The results demonstrate that the eddy current damper can effectively increase the equivalent damping and provide the necessary damping force to suppress machining chatter. Overall, the proposed method utilizing electromagnetic eddy current dampers presents a promising solution for suppressing machining vibrations in thin-walled workpieces.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9533689\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9533689","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

加工薄壁工件时经常发生加工振动。减轻这些振动的一种有效方法是使用阻尼器,这可以提高加工精度,表面光洁度和刀具寿命。然而,传统的接触阻尼器有一个缺点,即它们需要与工件直接接触,导致摩擦、磨损、切削力增加和加工精度降低。相比之下,电磁涡流阻尼器是非接触式阻尼器,无需物理接触即可有效抑制加工振动。提出了一种利用电磁涡流阻尼器抑制薄壁工件加工振动的方法。通过建立电磁阻尼器的理论模型,确定了电磁阻尼器的阻尼力和等效阻尼。随后,通过锤击试验研究了电磁阻尼器对频率响应函数和加工振动的影响。结果表明,增大表面阻尼器电压和减小气隙均能提高电磁涡流阻尼器的等效阻尼。通过切削实验分析了带阻尼器和不带阻尼器薄壁工件的表面粗糙度。结果表明,涡流阻尼器可以有效地增加等效阻尼,并提供必要的阻尼力来抑制加工颤振。总的来说,利用电磁涡流阻尼器的方法为抑制薄壁工件的加工振动提供了一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppressing Milling Chatter of Thin-Walled Parts by Eddy Current Dampers
Machining vibrations often occur when working with thin-walled workpieces. One effective method to mitigate these vibrations is by using a damper, which can enhance machining accuracy, surface finish, and tool life. However, traditional contact dampers have a drawback in that they require direct contact with the workpiece, leading to friction, wear, increased cutting forces, and reduced machining accuracy. In contrast, electromagnetic eddy current dampers are noncontact dampers that can effectively suppress machining vibrations without the need for physical contact. In this study, a method to suppress machining vibrations in thin-walled workpieces using electromagnetic eddy current dampers is proposed. By establishing a theoretical model for the electromagnetic damper, the damping force and equivalent damping of the damper are determined. Subsequently, the impact of electromagnetic dampers on frequency response functions and machining vibrations are investigated through hammer impact tests. The results indicate that increasing the surface damper voltage and reducing the air gap both enhance the equivalent damping of the electromagnetic eddy current damper. Moreover, cutting experiments are conducted to analyze the surface roughness of thin-walled workpieces with and without dampers. The results demonstrate that the eddy current damper can effectively increase the equivalent damping and provide the necessary damping force to suppress machining chatter. Overall, the proposed method utilizing electromagnetic eddy current dampers presents a promising solution for suppressing machining vibrations in thin-walled workpieces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信