{"title":"KC-GEE:基于知识的条件作用生成事件提取","authors":"Tongtong Wu, Fatemeh Shiri, Jingqi Kang, Guilin Qi, Gholamreza Haffari, Yuan-Fang Li","doi":"10.1007/s11280-023-01216-5","DOIUrl":null,"url":null,"abstract":"Abstract Event extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"KC-GEE: knowledge-based conditioning for generative event extraction\",\"authors\":\"Tongtong Wu, Fatemeh Shiri, Jingqi Kang, Guilin Qi, Gholamreza Haffari, Yuan-Fang Li\",\"doi\":\"10.1007/s11280-023-01216-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Event extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.\",\"PeriodicalId\":49356,\"journal\":{\"name\":\"World Wide Web-Internet and Web Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web-Internet and Web Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01216-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01216-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
KC-GEE: knowledge-based conditioning for generative event extraction
Abstract Event extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.
期刊介绍:
World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems.
Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.