材料挤压增材制造过程中挤压和凝固的中尺度模拟

Jeffrey Allen, Guillermo Riveros, Ivan Beckman, Elton Freeman
{"title":"材料挤压增材制造过程中挤压和凝固的中尺度模拟","authors":"Jeffrey Allen, Guillermo Riveros, Ivan Beckman, Elton Freeman","doi":"10.21926/rpm.2304033","DOIUrl":null,"url":null,"abstract":"In this work, we apply a multiphysics approach to fused deposition modeling to simulate extrusion and solidification. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum and mass transfer, the solid/liquid/vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies, to include the printing and extrusion speed, as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e. the level set method) in concert with a temperature dependent porosity function. The use of the level-set method for discriminating the phase change interface in this context is relatively new and offers considerable advantages over existing methods.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscale Modeling of Extrusion and Solidification During Material Extrusion Additive Manufacturing\",\"authors\":\"Jeffrey Allen, Guillermo Riveros, Ivan Beckman, Elton Freeman\",\"doi\":\"10.21926/rpm.2304033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we apply a multiphysics approach to fused deposition modeling to simulate extrusion and solidification. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum and mass transfer, the solid/liquid/vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies, to include the printing and extrusion speed, as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e. the level set method) in concert with a temperature dependent porosity function. The use of the level-set method for discriminating the phase change interface in this context is relatively new and offers considerable advantages over existing methods.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2304033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2304033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们应用多物理场方法来模拟熔融沉积建模,以模拟挤压和凝固。将工作限制在单线扫描,我们重点关注聚乳酸的应用。除了热量、动量和质量传递之外,还使用前置跟踪水平集方法模拟了固体/液体/蒸汽界面。结果集中在温度、粘度和体积分数的变化,并在一组参数研究中进行,包括打印和挤出速度以及挤出温度。在其他研究结果中,研究人员观察到,使用前置跟踪方法(即水平集方法)与温度相关的孔隙度函数可以有效地建模熔融沉积模型。在这种情况下,使用水平集方法来区分相变界面是相对较新的,并且比现有方法具有相当大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoscale Modeling of Extrusion and Solidification During Material Extrusion Additive Manufacturing
In this work, we apply a multiphysics approach to fused deposition modeling to simulate extrusion and solidification. Restricting the work to a single line scan, we focus on the application of polylactic acid. In addition to heat, momentum and mass transfer, the solid/liquid/vapor interface is simulated using a front-tracking, level-set method. The results focus on the evolving temperature, viscosity, and volume fraction and are cast within a set of parametric studies, to include the printing and extrusion speed, as well as the extrusion temperature. Among other findings, it was observed that fused deposition modeling can be effectively modeled using a front-tracking method (i.e. the level set method) in concert with a temperature dependent porosity function. The use of the level-set method for discriminating the phase change interface in this context is relatively new and offers considerable advantages over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信