{"title":"基于FMEA驱动的解释结构模型的水泥行业供应链风险模型","authors":"Pallawi Baldeo Sangode","doi":"10.3926/jiem.5643","DOIUrl":null,"url":null,"abstract":"Purpose: This paper aims to identify, analyze, model the risk elements in the supply chain and further set future trends to evaluate risks in other domains of cement manufacturing industry. Cement is the second most consumed material in the world, has a fast supply chain in the global market. This has driven the authors to study the supply chain risks for this sector.Design/methodology/approach: Through a detailed literature review and interaction with industry experts, 19 risk elements have been identified that may disrupt the supply chain activities. Failure Mode and Effect Analysis (FMEA) is used to prioritize these risk elements based on the risk priority number (RPN). RPN is derived from the severity, occurrence, and detectability of these risk elements in various process functions of the supply chain. 10 risk elements are selected from this analysis that have higher priority number. Further, these elements have been fed to the Interpretive Structural Model (ISM) that derived the contextual interrelationship among these elements. Further MICMAC analysis has been implemented on the risk elements based on their driving and dependency power.Findings: Unpredicted heavy rainfall and energy shortages have been identified as the root causes of other risk elements. Increasing turnaround time in logistics and fleet adjustment during heavy demand, having the highest dependence power, are considered as the most important risk elements in the cement industry supply chain. Originality/value: This is the first study in the domain of supply chain risks which has analyzed and modelled risks for cement industry. This work would provide the decision-makers of cement industry to focus on the specific risk elements for reducing disruptions in the supply chain.","PeriodicalId":38526,"journal":{"name":"International Journal of Industrial Engineering and Management","volume":"46 7","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supply chain risk model for cement industry based on interpretive structural model driven by FMEA\",\"authors\":\"Pallawi Baldeo Sangode\",\"doi\":\"10.3926/jiem.5643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This paper aims to identify, analyze, model the risk elements in the supply chain and further set future trends to evaluate risks in other domains of cement manufacturing industry. Cement is the second most consumed material in the world, has a fast supply chain in the global market. This has driven the authors to study the supply chain risks for this sector.Design/methodology/approach: Through a detailed literature review and interaction with industry experts, 19 risk elements have been identified that may disrupt the supply chain activities. Failure Mode and Effect Analysis (FMEA) is used to prioritize these risk elements based on the risk priority number (RPN). RPN is derived from the severity, occurrence, and detectability of these risk elements in various process functions of the supply chain. 10 risk elements are selected from this analysis that have higher priority number. Further, these elements have been fed to the Interpretive Structural Model (ISM) that derived the contextual interrelationship among these elements. Further MICMAC analysis has been implemented on the risk elements based on their driving and dependency power.Findings: Unpredicted heavy rainfall and energy shortages have been identified as the root causes of other risk elements. Increasing turnaround time in logistics and fleet adjustment during heavy demand, having the highest dependence power, are considered as the most important risk elements in the cement industry supply chain. Originality/value: This is the first study in the domain of supply chain risks which has analyzed and modelled risks for cement industry. This work would provide the decision-makers of cement industry to focus on the specific risk elements for reducing disruptions in the supply chain.\",\"PeriodicalId\":38526,\"journal\":{\"name\":\"International Journal of Industrial Engineering and Management\",\"volume\":\"46 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3926/jiem.5643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jiem.5643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Supply chain risk model for cement industry based on interpretive structural model driven by FMEA
Purpose: This paper aims to identify, analyze, model the risk elements in the supply chain and further set future trends to evaluate risks in other domains of cement manufacturing industry. Cement is the second most consumed material in the world, has a fast supply chain in the global market. This has driven the authors to study the supply chain risks for this sector.Design/methodology/approach: Through a detailed literature review and interaction with industry experts, 19 risk elements have been identified that may disrupt the supply chain activities. Failure Mode and Effect Analysis (FMEA) is used to prioritize these risk elements based on the risk priority number (RPN). RPN is derived from the severity, occurrence, and detectability of these risk elements in various process functions of the supply chain. 10 risk elements are selected from this analysis that have higher priority number. Further, these elements have been fed to the Interpretive Structural Model (ISM) that derived the contextual interrelationship among these elements. Further MICMAC analysis has been implemented on the risk elements based on their driving and dependency power.Findings: Unpredicted heavy rainfall and energy shortages have been identified as the root causes of other risk elements. Increasing turnaround time in logistics and fleet adjustment during heavy demand, having the highest dependence power, are considered as the most important risk elements in the cement industry supply chain. Originality/value: This is the first study in the domain of supply chain risks which has analyzed and modelled risks for cement industry. This work would provide the decision-makers of cement industry to focus on the specific risk elements for reducing disruptions in the supply chain.
期刊介绍:
International Journal of Industrial Engineering and Management (IJIEM) is an interdisciplinary international academic journal published quarterly. IJIEM serves researchers in the industrial engineering, manufacturing engineering and management fields. The major aims are: To collect and disseminate information on new and advanced developments in the field of industrial engineering and management; To encourage further progress in engineering and management methodology and applications; To cover the range of engineering and management development and usage in their use of managerial policies and strategies. Thus, IJIEM invites the submission of original, high quality, theoretical and application-oriented research; general surveys and critical reviews; educational or training articles including case studies, in the field of industrial engineering and management. The journal covers all aspects of industrial engineering and management, particularly: -Smart Manufacturing & Industry 4.0, -Production Systems, -Service Engineering, -Automation, Robotics and Mechatronics, -Information and Communication Systems, -ICT for Collaborative Manufacturing, -Quality, Maintenance and Logistics, -Safety and Reliability, -Organization and Human Resources, -Engineering Management, -Entrepreneurship and Innovation, -Project Management, -Marketing and Commerce, -Investment, Finance and Accounting, -Insurance Engineering and Management, -Media Engineering and Management, -Education and Practices in Industrial Engineering and Management.