var诱导的欧拉分配规则的估计

IF 1.7 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2023-05-02 DOI:10.1017/asb.2023.17
N.V. Gribkova, J. Su, R. Zitikis
{"title":"var诱导的欧拉分配规则的估计","authors":"N.V. Gribkova, J. Su, R. Zitikis","doi":"10.1017/asb.2023.17","DOIUrl":null,"url":null,"abstract":"Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"106 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the VaR-induced Euler allocation rule\",\"authors\":\"N.V. Gribkova, J. Su, R. Zitikis\",\"doi\":\"10.1017/asb.2023.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2023.17\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2023.17","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

欧拉分配规则(EAR)的突出之处在于它是唯一与风险调整后资本收益(RORAC)相容的资本分配规则。当使用风险值(VaR)设定总监管资本时,EAR就变成了——用统计术语来说——分位数回归(QR)函数。虽然累积QR函数(即QR函数的一个积分)在文献中得到了相当大的关注,但一个完整的QR函数本身的统计推断理论却难以捉摸。在本文中,我们基于经验QR估计量发展了这样一个理论,我们建立了相合性,渐近正态性和标准误差估计。这使得本文开发的结果易于应用于实践,从而促进了在RORAC范式、条件平均风险分担和当前监管框架下的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the VaR-induced Euler allocation rule
Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信