{"title":"var诱导的欧拉分配规则的估计","authors":"N.V. Gribkova, J. Su, R. Zitikis","doi":"10.1017/asb.2023.17","DOIUrl":null,"url":null,"abstract":"Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"106 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the VaR-induced Euler allocation rule\",\"authors\":\"N.V. Gribkova, J. Su, R. Zitikis\",\"doi\":\"10.1017/asb.2023.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2023.17\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2023.17","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Abstract The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature, a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality, and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.