Jari Cornelis, Brenton von Takach, Christine E. Cooper, Jordan Vos, Philip W. Bateman, Damian C. Lettoof
{"title":"城市湿地中入侵杂草对虎蛇栖息地质量和猎物可得性的影响","authors":"Jari Cornelis, Brenton von Takach, Christine E. Cooper, Jordan Vos, Philip W. Bateman, Damian C. Lettoof","doi":"10.1007/s11273-023-09943-2","DOIUrl":null,"url":null,"abstract":"Abstract Invasive plants are a threat to natural ecosystems worldwide, with urban wetlands being some of the most susceptible and highly modified environments of all. The tiger snake ( Notechis scutatus ) is a top predator that persists in urban wetlands of south-western Australia, many of which have been degraded by introduced kikuyu grass ( Cenchrus clandestinus ). To evaluate the potential impact of kikuyu grass on habitat quality for tiger snakes we quantified the structural features of habitats within wetlands degraded by kikuyu grass and compared them to wetlands with native vegetation. We also examined tiger snake prey availability, assessed predation risk for juvenile snakes using clay models, and measured the thermal quality of the vegetation. Proliferation of kikuyu grass has reduced habitat structural heterogeneity by reducing available bare ground and increasing vegetation density. This homogenisation of habitat structure had little effect on the predation risk for juveniles or the thermal properties of tiger snake shelter sites; however, one key prey species, the motorbike frog, had significantly lower abundance in the most impacted habitat. Habitat types with more structural complexity also offered tiger snakes more stable thermal regimes and lower predation risk. These findings indicate that the current extent of kikuyu grass invasion offers overall similar habitat quality for tiger snakes to native vegetation and may contribute to their persistence in urban wetlands; however, both tiger snakes and their anuran prey may benefit from increased habitat structural complexity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantifying the impacts of an invasive weed on habitat quality and prey availability for tiger snakes (Notechis scutatus) in urban wetlands\",\"authors\":\"Jari Cornelis, Brenton von Takach, Christine E. Cooper, Jordan Vos, Philip W. Bateman, Damian C. Lettoof\",\"doi\":\"10.1007/s11273-023-09943-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Invasive plants are a threat to natural ecosystems worldwide, with urban wetlands being some of the most susceptible and highly modified environments of all. The tiger snake ( Notechis scutatus ) is a top predator that persists in urban wetlands of south-western Australia, many of which have been degraded by introduced kikuyu grass ( Cenchrus clandestinus ). To evaluate the potential impact of kikuyu grass on habitat quality for tiger snakes we quantified the structural features of habitats within wetlands degraded by kikuyu grass and compared them to wetlands with native vegetation. We also examined tiger snake prey availability, assessed predation risk for juvenile snakes using clay models, and measured the thermal quality of the vegetation. Proliferation of kikuyu grass has reduced habitat structural heterogeneity by reducing available bare ground and increasing vegetation density. This homogenisation of habitat structure had little effect on the predation risk for juveniles or the thermal properties of tiger snake shelter sites; however, one key prey species, the motorbike frog, had significantly lower abundance in the most impacted habitat. Habitat types with more structural complexity also offered tiger snakes more stable thermal regimes and lower predation risk. These findings indicate that the current extent of kikuyu grass invasion offers overall similar habitat quality for tiger snakes to native vegetation and may contribute to their persistence in urban wetlands; however, both tiger snakes and their anuran prey may benefit from increased habitat structural complexity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11273-023-09943-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11273-023-09943-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantifying the impacts of an invasive weed on habitat quality and prey availability for tiger snakes (Notechis scutatus) in urban wetlands
Abstract Invasive plants are a threat to natural ecosystems worldwide, with urban wetlands being some of the most susceptible and highly modified environments of all. The tiger snake ( Notechis scutatus ) is a top predator that persists in urban wetlands of south-western Australia, many of which have been degraded by introduced kikuyu grass ( Cenchrus clandestinus ). To evaluate the potential impact of kikuyu grass on habitat quality for tiger snakes we quantified the structural features of habitats within wetlands degraded by kikuyu grass and compared them to wetlands with native vegetation. We also examined tiger snake prey availability, assessed predation risk for juvenile snakes using clay models, and measured the thermal quality of the vegetation. Proliferation of kikuyu grass has reduced habitat structural heterogeneity by reducing available bare ground and increasing vegetation density. This homogenisation of habitat structure had little effect on the predation risk for juveniles or the thermal properties of tiger snake shelter sites; however, one key prey species, the motorbike frog, had significantly lower abundance in the most impacted habitat. Habitat types with more structural complexity also offered tiger snakes more stable thermal regimes and lower predation risk. These findings indicate that the current extent of kikuyu grass invasion offers overall similar habitat quality for tiger snakes to native vegetation and may contribute to their persistence in urban wetlands; however, both tiger snakes and their anuran prey may benefit from increased habitat structural complexity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.