Ting-Wei Hsu, Jason J. Choi, Divyang Amin, Claire Tomlin, Shaun C. McWherter, Michael Piedmonte
{"title":"利用Hamilton-Jacobi可达性实现NASA倾翼eVTOL飞行模式转换的飞行包线保护","authors":"Ting-Wei Hsu, Jason J. Choi, Divyang Amin, Claire Tomlin, Shaun C. McWherter, Michael Piedmonte","doi":"10.4050/jahs.69.022003","DOIUrl":null,"url":null,"abstract":"Innovative electric vertical take-off and landing (eVTOL) aircraft designs and operational concepts, driven by advancements in battery and electric motor technologies, seek to achieve superior safety records with increased system redundancy. Validating safe flight operations within verified flight envelope regions for passenger flights in densely populated urban environments remains a primary challenge. This paper establishes a framework for applying Hamilton–Jacobi reachability analysis to the full six-degree-of-freedom (6-DOF) dynamics of the NASA Tiltwing vehicle, verifying the flight envelope during the flight mode transition between near-hover and cruise flight, which prevents loss of control of the vehicle and ensures recoverability to safe trim conditions. This involves first verifying the nominal flight mode transition path as a series of trim points, defining the safe flight envelope using reachability, and decomposing the system dynamics into longitudinal and lateral subsystems. Our formulation guarantees the computed envelope's robustness against modeling errors and uncertainties, and the usage of state decomposition significantly improves the tractability of the reachability computation. The result is validated through Monte Carlo 6-DOF nonlinear simulation of vehicle dynamics, demonstrating that the vehicle states within the flight envelope can successfully recover to trim states and continue the flight mode transition safely.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"71 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Flight Envelope Protection for the NASA Tiltwing eVTOL Flight Mode Transition Using Hamilton–Jacobi Reachability\",\"authors\":\"Ting-Wei Hsu, Jason J. Choi, Divyang Amin, Claire Tomlin, Shaun C. McWherter, Michael Piedmonte\",\"doi\":\"10.4050/jahs.69.022003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Innovative electric vertical take-off and landing (eVTOL) aircraft designs and operational concepts, driven by advancements in battery and electric motor technologies, seek to achieve superior safety records with increased system redundancy. Validating safe flight operations within verified flight envelope regions for passenger flights in densely populated urban environments remains a primary challenge. This paper establishes a framework for applying Hamilton–Jacobi reachability analysis to the full six-degree-of-freedom (6-DOF) dynamics of the NASA Tiltwing vehicle, verifying the flight envelope during the flight mode transition between near-hover and cruise flight, which prevents loss of control of the vehicle and ensures recoverability to safe trim conditions. This involves first verifying the nominal flight mode transition path as a series of trim points, defining the safe flight envelope using reachability, and decomposing the system dynamics into longitudinal and lateral subsystems. Our formulation guarantees the computed envelope's robustness against modeling errors and uncertainties, and the usage of state decomposition significantly improves the tractability of the reachability computation. The result is validated through Monte Carlo 6-DOF nonlinear simulation of vehicle dynamics, demonstrating that the vehicle states within the flight envelope can successfully recover to trim states and continue the flight mode transition safely.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.69.022003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.69.022003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Towards Flight Envelope Protection for the NASA Tiltwing eVTOL Flight Mode Transition Using Hamilton–Jacobi Reachability
Innovative electric vertical take-off and landing (eVTOL) aircraft designs and operational concepts, driven by advancements in battery and electric motor technologies, seek to achieve superior safety records with increased system redundancy. Validating safe flight operations within verified flight envelope regions for passenger flights in densely populated urban environments remains a primary challenge. This paper establishes a framework for applying Hamilton–Jacobi reachability analysis to the full six-degree-of-freedom (6-DOF) dynamics of the NASA Tiltwing vehicle, verifying the flight envelope during the flight mode transition between near-hover and cruise flight, which prevents loss of control of the vehicle and ensures recoverability to safe trim conditions. This involves first verifying the nominal flight mode transition path as a series of trim points, defining the safe flight envelope using reachability, and decomposing the system dynamics into longitudinal and lateral subsystems. Our formulation guarantees the computed envelope's robustness against modeling errors and uncertainties, and the usage of state decomposition significantly improves the tractability of the reachability computation. The result is validated through Monte Carlo 6-DOF nonlinear simulation of vehicle dynamics, demonstrating that the vehicle states within the flight envelope can successfully recover to trim states and continue the flight mode transition safely.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine