Navier-Stokes和液晶不等式的前向奇异的抛物分形维数

IF 1.1 3区 数学 Q1 MATHEMATICS
Gabriel S. Koch
{"title":"Navier-Stokes和液晶不等式的前向奇异的抛物分形维数","authors":"Gabriel S. Koch","doi":"10.3934/dcds.2023121","DOIUrl":null,"url":null,"abstract":"In 1985, V. Scheffer discussed partial regularity for what he called solutions to the 'Navier-Stokes inequality', which only satisfy the incompressibility condition as well as the local and global energy inequalities and the pressure equation which may be derived formally from the Navier-Stokes system. One may extend this notion to a system introduced by F.-H. Lin and C. Liu in 1995 to model the flow of nematic liquid crystals, which include the Navier-Stokes system when the 'director field' $ d $ is taken to be zero. The model includes a further parabolic system which implies an a priori maximum principle for $ d $, which is lost when one considers the analogous 'inequality'.In 2018, Q. Liu proved a partial regularity result for solutions to the Lin-Liu model in terms of the 'parabolic fractal dimension' $ \\text{dim}_{ \\text{pf}} $, relying on the boundedness of $ d $ coming from the maximum principle. Q. Liu proves $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac{95}{63}} $ for any compact $ \\mathcal{K} $, where $ \\Sigma_{-} $ is the set of space-time points near which the solution blows up forwards in time. For solutions to the corresponding 'inequality', we prove that, without any compensation for the lack of maximum principle, one has $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac {55}{13}} $. We also provide a range of criteria, including as just one example the boundedness of $ d $, any one of which would furthermore imply that solutions to the inequality also satisfy $ { \\text{dim}_{ \\text{pf}}(\\Sigma_{-} \\cap \\mathcal{K}) \\leq \\tfrac{95}{63}} $.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"10 6 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic fractal dimension of forward-singularities for Navier-Stokes and liquid crystals inequalities\",\"authors\":\"Gabriel S. Koch\",\"doi\":\"10.3934/dcds.2023121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1985, V. Scheffer discussed partial regularity for what he called solutions to the 'Navier-Stokes inequality', which only satisfy the incompressibility condition as well as the local and global energy inequalities and the pressure equation which may be derived formally from the Navier-Stokes system. One may extend this notion to a system introduced by F.-H. Lin and C. Liu in 1995 to model the flow of nematic liquid crystals, which include the Navier-Stokes system when the 'director field' $ d $ is taken to be zero. The model includes a further parabolic system which implies an a priori maximum principle for $ d $, which is lost when one considers the analogous 'inequality'.In 2018, Q. Liu proved a partial regularity result for solutions to the Lin-Liu model in terms of the 'parabolic fractal dimension' $ \\\\text{dim}_{ \\\\text{pf}} $, relying on the boundedness of $ d $ coming from the maximum principle. Q. Liu proves $ { \\\\text{dim}_{ \\\\text{pf}}(\\\\Sigma_{-} \\\\cap \\\\mathcal{K}) \\\\leq \\\\tfrac{95}{63}} $ for any compact $ \\\\mathcal{K} $, where $ \\\\Sigma_{-} $ is the set of space-time points near which the solution blows up forwards in time. For solutions to the corresponding 'inequality', we prove that, without any compensation for the lack of maximum principle, one has $ { \\\\text{dim}_{ \\\\text{pf}}(\\\\Sigma_{-} \\\\cap \\\\mathcal{K}) \\\\leq \\\\tfrac {55}{13}} $. We also provide a range of criteria, including as just one example the boundedness of $ d $, any one of which would furthermore imply that solutions to the inequality also satisfy $ { \\\\text{dim}_{ \\\\text{pf}}(\\\\Sigma_{-} \\\\cap \\\\mathcal{K}) \\\\leq \\\\tfrac{95}{63}} $.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"10 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1985年,V. Scheffer讨论了他所谓的“Navier-Stokes不等式”解的部分正则性,这些解只满足不可压缩条件以及局部和全局能量不等式和压力方程,这些方程可以从Navier-Stokes系统形式上推导出来。人们可以把这个概念扩展到f - h引入的系统。Lin和C. Liu在1995年建立了向列型液晶的流动模型,其中包括当“导向场”$ d $为零时的Navier-Stokes系统。该模型还包括一个进一步的抛物系统,该系统暗示了$ d $的先验极大值原理,当考虑类似的“不等式”时,该原理就丢失了。2018年,Q. Liu利用极大值原理中$ d $的有界性,证明了Lin-Liu模型在“抛物分形维数”$ \text{dim}_{ \text{pf}} $下解的部分正则性结果。Q. Liu证明了$ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $对于任意紧致$ \mathcal{K} $,其中$ \Sigma_{-} $是解在时间上向前爆炸的时空点的集合。对于相应的“不等式”的解,我们证明了,在不补偿极大值原理缺失的情况下,有$ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac {55}{13}} $。我们还提供了一系列准则,包括$ d $的有界性,其中任何一个都进一步暗示不等式的解也满足$ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic fractal dimension of forward-singularities for Navier-Stokes and liquid crystals inequalities
In 1985, V. Scheffer discussed partial regularity for what he called solutions to the 'Navier-Stokes inequality', which only satisfy the incompressibility condition as well as the local and global energy inequalities and the pressure equation which may be derived formally from the Navier-Stokes system. One may extend this notion to a system introduced by F.-H. Lin and C. Liu in 1995 to model the flow of nematic liquid crystals, which include the Navier-Stokes system when the 'director field' $ d $ is taken to be zero. The model includes a further parabolic system which implies an a priori maximum principle for $ d $, which is lost when one considers the analogous 'inequality'.In 2018, Q. Liu proved a partial regularity result for solutions to the Lin-Liu model in terms of the 'parabolic fractal dimension' $ \text{dim}_{ \text{pf}} $, relying on the boundedness of $ d $ coming from the maximum principle. Q. Liu proves $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $ for any compact $ \mathcal{K} $, where $ \Sigma_{-} $ is the set of space-time points near which the solution blows up forwards in time. For solutions to the corresponding 'inequality', we prove that, without any compensation for the lack of maximum principle, one has $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac {55}{13}} $. We also provide a range of criteria, including as just one example the boundedness of $ d $, any one of which would furthermore imply that solutions to the inequality also satisfy $ { \text{dim}_{ \text{pf}}(\Sigma_{-} \cap \mathcal{K}) \leq \tfrac{95}{63}} $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信