应用图像技术估算加工肉制品中亚硝酸盐的含量

Pub Date : 2023-01-01 DOI:10.12720/jait.14.5.1088-1095
Tippaya Thinsungnoen, Jessada Rattanasuporn, Manoch Thinsungnoen, Thanakorn Pluangklang, Vanida Choomuenwai, Chareonsak Lao-ngam, Panadda Phansamdaeng, Chutima Pluangklang, Maliwan Subsadsana
{"title":"应用图像技术估算加工肉制品中亚硝酸盐的含量","authors":"Tippaya Thinsungnoen, Jessada Rattanasuporn, Manoch Thinsungnoen, Thanakorn Pluangklang, Vanida Choomuenwai, Chareonsak Lao-ngam, Panadda Phansamdaeng, Chutima Pluangklang, Maliwan Subsadsana","doi":"10.12720/jait.14.5.1088-1095","DOIUrl":null,"url":null,"abstract":"—Potassium nitrite or saltpeter is used as a food additive and preservative. It confers a fresh and appetizing appearance to food when used in moderation. However, when used in excess, it may lead to cancer. In the present study, an image-processing mobile application was developed for quality control and ensure the hygiene of food products. The developed application is a user-friendly innovation that would raise the quality standards of processed foods, allowing for a competitive edge in the market. The main objectives of the present study were to identify the representatives of each class of suitable color tones and then develop a model-based application for estimating the content of nitrite in processed meat products. The study was conducted in six steps: (1) image layer separation of RGB to three layers comprising the R-G-B layers; (2) identification of the representatives of each class of suitable color tones using the k-means clustering technique; (3) deciphering the linear equations representing the linear relationship between the color tone and the content of nitrite; (4) designing of a mobile application for estimating the amount of nitrite based on an image; (5) development of the model-based mobile application for estimating the nitrite content; (6) evaluation of the developed mobile application using the testing dataset. The results revealed that the mean and median of the green color’s layer were appropriate representatives of the image dataset and could also be associated with the concentration of the nitrite standard solution. In addition, the efficiency of estimating the concentration of nitrite in meat products using the paper analytical apparatus was 88.25%.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying an Image Technology to Estimates Values of Nitrite in Processed Meat Products\",\"authors\":\"Tippaya Thinsungnoen, Jessada Rattanasuporn, Manoch Thinsungnoen, Thanakorn Pluangklang, Vanida Choomuenwai, Chareonsak Lao-ngam, Panadda Phansamdaeng, Chutima Pluangklang, Maliwan Subsadsana\",\"doi\":\"10.12720/jait.14.5.1088-1095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Potassium nitrite or saltpeter is used as a food additive and preservative. It confers a fresh and appetizing appearance to food when used in moderation. However, when used in excess, it may lead to cancer. In the present study, an image-processing mobile application was developed for quality control and ensure the hygiene of food products. The developed application is a user-friendly innovation that would raise the quality standards of processed foods, allowing for a competitive edge in the market. The main objectives of the present study were to identify the representatives of each class of suitable color tones and then develop a model-based application for estimating the content of nitrite in processed meat products. The study was conducted in six steps: (1) image layer separation of RGB to three layers comprising the R-G-B layers; (2) identification of the representatives of each class of suitable color tones using the k-means clustering technique; (3) deciphering the linear equations representing the linear relationship between the color tone and the content of nitrite; (4) designing of a mobile application for estimating the amount of nitrite based on an image; (5) development of the model-based mobile application for estimating the nitrite content; (6) evaluation of the developed mobile application using the testing dataset. The results revealed that the mean and median of the green color’s layer were appropriate representatives of the image dataset and could also be associated with the concentration of the nitrite standard solution. In addition, the efficiency of estimating the concentration of nitrite in meat products using the paper analytical apparatus was 88.25%.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.5.1088-1095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.5.1088-1095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Applying an Image Technology to Estimates Values of Nitrite in Processed Meat Products
—Potassium nitrite or saltpeter is used as a food additive and preservative. It confers a fresh and appetizing appearance to food when used in moderation. However, when used in excess, it may lead to cancer. In the present study, an image-processing mobile application was developed for quality control and ensure the hygiene of food products. The developed application is a user-friendly innovation that would raise the quality standards of processed foods, allowing for a competitive edge in the market. The main objectives of the present study were to identify the representatives of each class of suitable color tones and then develop a model-based application for estimating the content of nitrite in processed meat products. The study was conducted in six steps: (1) image layer separation of RGB to three layers comprising the R-G-B layers; (2) identification of the representatives of each class of suitable color tones using the k-means clustering technique; (3) deciphering the linear equations representing the linear relationship between the color tone and the content of nitrite; (4) designing of a mobile application for estimating the amount of nitrite based on an image; (5) development of the model-based mobile application for estimating the nitrite content; (6) evaluation of the developed mobile application using the testing dataset. The results revealed that the mean and median of the green color’s layer were appropriate representatives of the image dataset and could also be associated with the concentration of the nitrite standard solution. In addition, the efficiency of estimating the concentration of nitrite in meat products using the paper analytical apparatus was 88.25%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信