对称感知器的临界窗口

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Dylan J. Altschuler
{"title":"对称感知器的临界窗口","authors":"Dylan J. Altschuler","doi":"10.1214/23-ejp1024","DOIUrl":null,"url":null,"abstract":"We study the critical window of the symmetric binary perceptron, or equivalently, random combinatorial discrepancy. Consider the problem of finding a ±1-valued vector σ satisfying ‖Aσ‖∞≤K, where A is an αn×n matrix with iid Gaussian entries. For fixed K, at which constraint densities α is this constraint satisfaction problem (CSP) satisfiable? A sharp threshold was recently established by Perkins and Xu [29], and Abbe, Li, and Sly [2], answering this to first order. Namely, for each K there exists an explicit critical density αc so that for any fixed ϵ>0, with high probability the CSP is satisfiable for αn<(αc−ϵ)n and unsatisfiable for αn>(αc+ϵ)n. This corresponds to a bound of o(n) on the size of the critical window. We sharpen these results significantly, as well as provide exponential tail bounds. Our main result is that, perhaps surprisingly, the critical window is actually at most of order log(n). More precisely, for a large constant C, with high probability the CSP is satisfiable for αn<αcn−Clog(n) and unsatisfiable for αn>αcn+C. These results add the the symmetric perceptron to the short list of CSP models for which a critical window is rigorously known, and to the even shorter list for which this window is known to have nearly constant width.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":"24 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Critical window of the symmetric perceptron\",\"authors\":\"Dylan J. Altschuler\",\"doi\":\"10.1214/23-ejp1024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the critical window of the symmetric binary perceptron, or equivalently, random combinatorial discrepancy. Consider the problem of finding a ±1-valued vector σ satisfying ‖Aσ‖∞≤K, where A is an αn×n matrix with iid Gaussian entries. For fixed K, at which constraint densities α is this constraint satisfaction problem (CSP) satisfiable? A sharp threshold was recently established by Perkins and Xu [29], and Abbe, Li, and Sly [2], answering this to first order. Namely, for each K there exists an explicit critical density αc so that for any fixed ϵ>0, with high probability the CSP is satisfiable for αn<(αc−ϵ)n and unsatisfiable for αn>(αc+ϵ)n. This corresponds to a bound of o(n) on the size of the critical window. We sharpen these results significantly, as well as provide exponential tail bounds. Our main result is that, perhaps surprisingly, the critical window is actually at most of order log(n). More precisely, for a large constant C, with high probability the CSP is satisfiable for αn<αcn−Clog(n) and unsatisfiable for αn>αcn+C. These results add the the symmetric perceptron to the short list of CSP models for which a critical window is rigorously known, and to the even shorter list for which this window is known to have nearly constant width.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp1024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejp1024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了对称二元感知器的临界窗口,或者等效地,随机组合差异。考虑寻找一个满足‖a‖∞≤K的±1值向量σ的问题,其中a是一个具有iid高斯项的αn×n矩阵。对于固定K,在哪个约束密度α下约束满足问题(CSP)是可满足的?最近,Perkins和Xu[29]以及Abbe、Li和Sly[2]建立了一个尖锐的阈值,对这一问题进行了一级回答。也就是说,对于每一个K都存在一个显式的临界密度αc,因此对于任意一个固定的ε >0, CSP很可能对αn(αc+ ε)n是可满足的。这对应于临界窗口大小的0 (n)界。我们显著地强化了这些结果,并提供了指数尾界。我们的主要结果是,也许令人惊讶的是,关键窗口实际上最多是log(n)阶。更确切地说,对于一个较大的常数C, CSP对αnαcn+C有很高的概率是可满足的。这些结果将对称感知器添加到临界窗口严格已知的CSP模型的短列表中,以及更短的列表中,该窗口已知具有几乎恒定的宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical window of the symmetric perceptron
We study the critical window of the symmetric binary perceptron, or equivalently, random combinatorial discrepancy. Consider the problem of finding a ±1-valued vector σ satisfying ‖Aσ‖∞≤K, where A is an αn×n matrix with iid Gaussian entries. For fixed K, at which constraint densities α is this constraint satisfaction problem (CSP) satisfiable? A sharp threshold was recently established by Perkins and Xu [29], and Abbe, Li, and Sly [2], answering this to first order. Namely, for each K there exists an explicit critical density αc so that for any fixed ϵ>0, with high probability the CSP is satisfiable for αn<(αc−ϵ)n and unsatisfiable for αn>(αc+ϵ)n. This corresponds to a bound of o(n) on the size of the critical window. We sharpen these results significantly, as well as provide exponential tail bounds. Our main result is that, perhaps surprisingly, the critical window is actually at most of order log(n). More precisely, for a large constant C, with high probability the CSP is satisfiable for αn<αcn−Clog(n) and unsatisfiable for αn>αcn+C. These results add the the symmetric perceptron to the short list of CSP models for which a critical window is rigorously known, and to the even shorter list for which this window is known to have nearly constant width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信